211 research outputs found

    Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE

    Get PDF
    The evolution of the particle background at an altitude of ~540 km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by ~1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3 deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field.Comment: 21 pages, 11 figures, accepted for publication in Earth and Planetary Science Letter

    An XMM-Newton and NuSTAR study of IGR J18214-1318: a non-pulsating high-mass X-ray binary with a neutron star

    Get PDF
    IGR J18214-1318, a Galactic source discovered by the International Gamma-Ray Astrophysics Laboratory, is a high-mass X-ray binary (HMXB) with a supergiant O-type stellar donor. We report on the XMM-Newton and NuSTAR observations that were undertaken to determine the nature of the compact object in this system. This source exhibits high levels of aperiodic variability, but no periodic pulsations are detected with a 90% confidence upper limit of 2% fractional rms between 0.00003-88 Hz, a frequency range that includes the typical pulse periods of neutron stars (NSs) in HMXBs (0.1-103^3 s). Although the lack of pulsations prevents us from definitively identifying the compact object in IGR J18214-1318, the presence of an exponential cutoff with e-folding energy 30\lesssim30 keV in its 0.3-79 keV spectrum strongly suggests that the compact object is an NS. The X-ray spectrum also shows a Fe Kα\alpha emission line and a soft excess, which can be accounted for by either a partial-covering absorber with NH1023N_{\mathrm{H}}\approx10^{23} cm2^{-2} which could be due to the inhomogeneous supergiant wind, or a blackbody component with kT=1.740.05+0.04kT=1.74^{+0.04}_{-0.05} keV and RBB0.3R_{BB}\approx0.3 km, which may originate from NS hot spots. Although neither explanation for the soft excess can be excluded, the former is more consistent with the properties observed in other supergiant HMXBs. We compare IGR J18214-1318 to other HMXBs that lack pulsations or have long pulsation periods beyond the range covered by our observations.Comment: 15 pages, 12 figures, 4 table

    Evidence for different accretion regimes in GRO J1008-57

    Get PDF
    We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular the photon index hardens with increasing luminosity at intermediate luminosities between 103610^{36} - 103710^{37} erg s1^{-1}. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ3.7\sigma. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.Comment: 13 pages, 7 figures, 3 tables. Accepted for publication in A&

    A possible phase dependent absorption feature in the transient X-ray pulsar SAX J2103.5+4545

    Full text link
    We present an X-ray spectral and timing analysis of two NuSTARNuSTAR observations of the transient Be X-ray binary SAX J2103.5+4545 during its April 2016 outburst, which was characterized by the highest flux since NuSTARNuSTAR's launch. These observations provide detailed hard X-ray spectra of this source during its bright precursor flare and subsequent fainter regular outburst for the first time. In this work, we model the phase-averaged spectra for these observations with a negative and positive power law with an exponential cut-off (NPEX) model and compare the pulse profiles at different flux states. We found that the broad-band pulse profile changes from a three peaked pulse in the first observation to a two peaked pulse in the second observation, and that each of the pulse peaks has some energy dependence. We also perform pulse-phase spectroscopy and fit phase-resolved spectra with NPEX to evaluate how spectral parameters change with pulse phase. We find that while the continuum parameters are mostly constant with pulse phase, a weak absorption feature at ~12 keV that might, with further study, be classified as a cyclotron line, does show strong pulse phase dependence.Comment: 10 pages, 7 figures, accepted by ApJ, acknowledgements update

    Coupling hydrodynamics with comoving frame radiative transfer: II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    Full text link
    CONTEXT: Vela X-1, a prototypical high mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. AIMS: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. METHODS: We use the recently updated version of the PoWR code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. RESULTS: The wind flow in Vela X-1 is driven by ions from various elements with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v600v_\infty \approx 600 km/s. On the other hand, the wind velocity in the inner region where the NS is located is only 100\approx 100 km/s, which is not expected on the basis of a standard β\beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. CONCLUSIONS: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.Comment: 19 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    An extremely fast halo hot subdwarf star in a wide binary system

    Get PDF
    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: T_(eff) = 30 600 ± 500 K, log g = 5.57 ± 0.06 cm s^(−2), and He abundance log (nHe/nH) = - 3.0 ± 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [Fe/H] = - 1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d = 5.5 ± 0.5 kpc, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way

    Explaining the asymmetric line profile in Cepheus X-4 with spectral variation across pulse phase

    Get PDF
    The high mass X-ray binary Cepheus X-4, during its 2014 outburst, showed evidence for an asymmetric cyclotron line in its hard X-ray spectrum. The 2014 spectrum provides one of the clearest cases of an asymmetric line profile among all studied sources with Cyclotron Resonance Scattering Features (CRSF). We present a phase-resolved analysis of NuSTAR and Suzaku data taken at the peak and during the decline phases of this outburst. We find that the pulse-phased resolved spectra are well-fit by a single, symmetric cyclotron feature. The fit parameters vary strongly with pulse phase: most notably the central energy and depth of the cyclotron feature, the slope of the power-law component, and the absorbing column density. We synthesise a ‘phase averaged’ spectrum using the best-fitting parameters for these individual pulse phases, and find that this combined model spectrum has a similar asymmetry in the cyclotron features as discovered in phase-averaged data. We conclude that the pulse phase resolved analysis with simple symmetric line profiles when combined can explain the asymmetry detected in the phase-averaged data

    Optical and near-infrared spectroscopy of the black hole swift J1753.5-0127

    Get PDF
    We report on a multiwavelength observational campaign of the black hole (BH) X-ray binary Swift J1753.5-0127 that consists of an ESO/X-shooter spectrum supported by contemporaneous Swift/X-ray Telescope+Ultra-Violet/Optical Telescope (UVOT) and Australia Telescope Compact Array data. Interstellar medium absorption lines in the X-shooter spectrum allow us to determine E(B-V)=0.45+/- 0.02 along the line of sight to the source. We also report detection of emission signatures of He ii λ 4686, Hα, and, for the first time, H i λ 10906 and Paβ. The double-peaked morphology of these four lines is typical of the chromosphere of a rotating accretion disk. Nonetheless, the paucity of disk features points toward a low level of irradiation in the system. This is confirmed through spectral energy distribution modeling, and we find that the UVOT+X-shooter continuum mostly stems from the thermal emission of a viscous disk. We speculate that the absence of reprocessing is due to the compactness of an illumination-induced envelope that fails to reflect enough incoming hard X-ray photons back to the outer regions. The disk also marginally contributes to the Compton-dominated X-ray emission and is strongly truncated, with an inner radius about 1000 times larger than the BH's gravitational radius. A near-infrared excess is present, and we associate it with synchrotron radiation from a compact jet. However, the measured X-ray flux is significantly higher than what can be explained by the optically thin synchrotron jet component. We discuss these findings in the framework of the radio-quiet versus X-ray-bright hypothesis, favoring the presence of a residual disk, predicted by evaporation models, that contributes to the X-ray emission without enhancing the radio flux
    corecore