478 research outputs found

    Absorption-reduced waveguide structure for efficient terahertz generation

    Get PDF
    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tiltedpulse- front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-lJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers

    Finite bias Cooper pair splitting

    Full text link
    In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit non-classical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the electrical transport through the device can be tuned by electrical means to be dominated either by Cooper pair splitting (CPS), or by elastic co-tunneling (EC). The basic experimental findings can be understood by considering the energy dependent density of states in a QD. The reported experiments add bias-dependent spectroscopy to the investigative tools necessary to develop CPS-based sources of entangled electrons in solid-state devices.Comment: 4 pages, 4 figure

    Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    Full text link
    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, Indium Arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only few techniques were developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.Comment: 9 pages, 5 figure

    Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets

    Get PDF
    Using particle-in-cell simulations, we demonstrate an improvement of the target normal sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils yield the highest enhancement, which we show to be robust over a broad range of foil thicknesses and hole diameters. The improvement of TNSA performance results from more efficient hot-electron generation, caused by a more complex laser-electron interaction geometry and increased effective interaction area and duration. We show that TNSA is optimized for a nanohole distribution of relatively low areal density and that is not required to be periodic, thus relaxing the manufacturing constraints.Comment: 11 pages, 8 figure

    Second order equation of motion for electromagnetic radiation back-reaction

    Get PDF
    We take the viewpoint that the physically acceptable solutions of the Lorentz--Dirac equation for radiation back-reaction are actually determined by a second order equation of motion, the self-force being given as a function of spacetime location and velocity. We propose three different methods to obtain this self-force function. For two example systems, we determine the second order equation of motion exactly in the nonrelativistic regime via each of these three methods, the three methods leading to the same result. We reveal that, for both systems considered, back-reaction induces a damping proportional to velocity and, in addition, it decreases the effect of the external force.Comment: 13 page
    • …
    corecore