1,105 research outputs found

    Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Get PDF
    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.Comment: 22 pages, 11 figures, to be published in Physics of Plasma

    Impurity transport in trapped electron mode driven turbulence

    Full text link
    Trapped electron mode turbulence is studied by gyrokinetic simulations with the GYRO code and an analytical model including the effect of a poloidally varying electrostatic potential. Its impact on radial transport of high-Z trace impurities close to the core is thoroughly investigated and the dependence of the zero-flux impurity density gradient (peaking factor) on local plasma parameters is presented. Parameters such as ion-to-electron temperature ratio, electron temperature gradient and main species density gradient mainly affect the impurity peaking through their impact on mode characteristics. The poloidal asymmetry, the safety factor and magnetic shear have the strongest effect on impurity peaking, and it is shown that under certain scenarios where trapped electron modes are dominant, core accumulation of high-Z impurities can be avoided. We demonstrate that accounting for the momentum conservation property of the impurity-impurity collision operator can be important for an accurate evaluation of the impurity peaking factor.Comment: 30 pages, 10 figure

    Interpretation of runaway electron synchrotron and bremsstrahlung images

    Full text link
    The crescent spot shape observed in DIII-D runaway electron synchrotron radiation images is shown to result from the high degree of anisotropy in the emitted radiation, the finite spectral range of the camera and the distribution of runaways. The finite spectral camera range is found to be particularly important, as the radiation from the high-field side can be stronger by a factor 10610^6 than the radiation from the low-field side in DIII-D. By combining a kinetic model of the runaway dynamics with a synthetic synchrotron diagnostic we see that physical processes not described by the kinetic model (such as radial transport) are likely to be limiting the energy of the runaways. We show that a population of runaways with lower dominant energies and larger pitch-angles than those predicted by the kinetic model provide a better match to the synchrotron measurements. Using a new synthetic bremsstrahlung diagnostic we also simulate the view of the Gamma Ray Imager (GRI) diagnostic used at DIII-D to resolve the spatial distribution of runaway-generated bremsstrahlung.Comment: 21 pages, 11 figure

    Effective Governance of Global Financial Markets:An Evolutionary Plan for Reform

    Get PDF
    Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the momentum space dynamics. Under certain conditions, due to radiative momentum losses, a non-monotonic feature - a ‘bump' - can form in the runaway electron tail, creating a potential for bump-on-tail-type instabilities to arise. Here, we study the conditions for the existence of the bump. We derive an analytical threshold condition for bump appearance and give an approximate expression for the minimum energy at which the bump can appear. Numerical calculations are performed to support the analytical derivation

    Finite bias Cooper pair splitting

    Full text link
    In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit non-classical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the electrical transport through the device can be tuned by electrical means to be dominated either by Cooper pair splitting (CPS), or by elastic co-tunneling (EC). The basic experimental findings can be understood by considering the energy dependent density of states in a QD. The reported experiments add bias-dependent spectroscopy to the investigative tools necessary to develop CPS-based sources of entangled electrons in solid-state devices.Comment: 4 pages, 4 figure

    Optical bandgap engineering in nonlinear silicon nitride waveguides

    Get PDF
    Silicon nitride is awell-established material for photonic devices and integrated circuits. It displays a broad transparency window spanning from the visible to the mid-IR and waveguides can be manufactured with low losses. An absence of nonlinear multi-photon absorption in the erbium lightwave communications band has enabled various nonlinear optic applications in the past decade. Silicon nitride is a dielectric material whose optical and mechanical properties strongly depend on the deposition conditions. In particular, the optical bandgap can be modified with the gas flow ratio during low-pressure chemical vapor deposition (LPCVD). Here we show that this parameter can be controlled in a highly reproducible manner, providing an approach to synthesize the nonlinear Kerr coefficient of the material. This holistic empirical study provides relevant guidelines to optimize the properties of LPCVD silicon nitride waveguides for nonlinear optics applications that rely on the Kerr effect
    • 

    corecore