130 research outputs found
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors
Papers on atmospheric and astrophysical diffuse neutrino searches of all
flavors submitted to the 34th International Cosmic Ray Conference (ICRC 2015,
The Hague) by the IceCube Collaboration.Comment: 66 pages, 36 figures, Papers submitted to the 34th International
Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part III: Cosmic Rays
Papers on cosmic rays submitted to the 34th International Cosmic Ray
Conference (ICRC 2015, The Hague) by the IceCube Collaboration.Comment: 83 pages, 52 figues, Papers submitted to the 34th International
Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis
Characterization of the Atmospheric Muon Flux in IceCube
Muons produced in atmospheric cosmic ray showers account for the by far
dominant part of the event yield in large-volume underground particle
detectors. The IceCube detector, with an instrumented volume of about a cubic
kilometer, has the potential to conduct unique investigations on atmospheric
muons by exploiting the large collection area and the possibility to track
particles over a long distance. Through detailed reconstruction of energy
deposition along the tracks, the characteristics of muon bundles can be
quantified, and individual particles of exceptionally high energy identified.
The data can then be used to constrain the cosmic ray primary flux and the
contribution to atmospheric lepton fluxes from prompt decays of short-lived
hadrons.
In this paper, techniques for the extraction of physical measurements from
atmospheric muon events are described and first results are presented. The
multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in
the energy range from the knee to the ankle is derived and found to be
consistent with recent results from surface detectors. The single muon energy
spectrum is determined up to PeV energies and shows a clear indication for the
emergence of a distinct spectral component from prompt decays of short-lived
hadrons. The magnitude of the prompt flux, which should include a substantial
contribution from light vector meson di-muon decays, is consistent with current
theoretical predictions.Comment: 36 pages, 39 figure
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part V: Neutrino Oscillations and Supernova Searches
Papers on neutrino oscillations and supernova searches submitted to the 34th
International Cosmic Ray Conference (ICRC 2015, The Hague) by the IceCube
Collaboration.Comment: 20 pages, 13 figures, Papers submitted to the 34th International
Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis
An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory
We present the results and methodology of a search for neutrinos produced in
the decay of charged pions created in interactions between protons and
gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the
entire sky. This three-year search is the first in IceCube for shower-like
Cherenkov light patterns from electron, muon, and tau neutrinos correlated with
GRBs. We detect five low-significance events correlated with five GRBs. These
events are consistent with the background expectation from atmospheric muons
and neutrinos. The results of this search in combination with those of
IceCube's four years of searches for track-like Cherenkov light patterns from
muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that
tightly constrain current models of neutrino and ultra high energy cosmic ray
production in GRB fireballs.Comment: 33 pages, 14 figures; minor changes made to match published version
in the Astrophysical Journal, 2016 June 2
Neutrinos and Cosmic Rays Observed by IceCube
The core mission of the IceCube Neutrino observatory is to study the origin
and propagation of cosmic rays. IceCube, with its surface component IceTop,
observes multiple signatures to accomplish this mission. Most important are the
astrophysical neutrinos that are produced in interactions of cosmic rays, close
to their sources and in interstellar space. IceCube is the first instrument
that measures the properties of this astrophysical neutrino flux, and
constrains its origin. In addition, the spectrum, composition and anisotropy of
the local cosmic-ray flux are obtained from measurements of atmospheric muons
and showers. Here we provide an overview of recent findings from the analysis
of IceCube data, and their implications on our understanding of cosmic rays.Comment: Review article, to appear in Advances in Space Research, special
issue "Origins of Cosmic Rays
- …