21 research outputs found
Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?
The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca
has been investigated in high energy-resolution experiments using proton
inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region
of the ISGQR and its characteristic energy scales are extracted from the
experimental data by means of a wavelet analysis. The experimental scales are
well described by Random Phase Approximation (RPA) and second-RPA calculations
with an effective interaction derived from a realistic nucleon-nucleon
interaction by the Unitary Correlation Operator Method (UCOM). In these results
characteristic scales are already present at the mean-field level pointing to
their origination in Landau damping, in contrast to the findings in heavier
nuclei and also to SRPA calculations for 40Ca based on phenomenological
effective interactions, where fine structure is explained by the coupling to
two-particle two-hole (2p-2h) states.Comment: Phys. Lett. B, in pres
Study of the nucleon-induced preequilibrium reactions in terms of the Quantum Molecular Dynamics
The preequilibrium (nucleon-in, nucleon-out) angular distributions of
Al, Ni and Zr have been analyzed in the energy region from
90 to 200 MeV in terms of the Quantum Moleculear Dynamics (QMD) theory. First,
we show that the present approach can reproduce the measured (p,xp') and (p,xn)
angular distributions leading to continuous final states without adjusing any
parameters. Second, we show the results of the detailed study of the
preequilibrium reaction processes; the step-wise contribution to the angular
distribution, comparison with the quantum-mechanical Feshbach-Kerman-Koonin
theory, the effects of momentum distribution and surface refraction/reflection
to the quasifree scattering. Finally, the present method was used to assess the
importance of multiple preequilibrium particle emission as a function of
projectile energy up to 1 GeV.Comment: 22pages, Revex is used, 10 Postscript figures are available by
request from [email protected]
Incident-energy dependence of the analyzing power in the 58Ni(p,3He)56Co reaction between 80 and 120 MeV
This project looks at the angular distributions of the differential cross sections and analyzing powers of a few low lying states of 56Co in the reaction 58Ni(p,3He)56Co at three different incident energies between 80and 120 MeV. The measurements are compared with zero-range distorted-wave Born approximation (DWBA) calculations in which we assume a simple direct two-nucleon pickup process. Earlier inclusive (p,3He) reaction studies on similar targets were successfully treated in terms of a statistical pre-equilibrium multistep formalism, in which the final stage of the reaction involved a deuteron pickup, described by means of the DWBA. The analyzing power was shown to be rather sensitive to the contributions of the different order steps. However some features observed in the analyzing powers of these inclusive studies, though reproduced by the theory, are not fully understood.We therefore investigate the ability of the DWBA model to describe the (p,3He) pickup reaction to discrete states at different incident energies using a high resolution spectrometer
Emission of in the interaction of with nuclei at incident energies up to 33 MeV/amu
The spectra of fragments emitted in the interaction of 100,
200, 300 and 400 MeV with , and have
been measured and analysed. Our analysis suggests that, before breaking up,
may suffer a considerable energy loss which increases with increasing
incident energy. The amount of excitation energy provided to the target nucleus
in this process increases with decreasing charge of the target nucleus
Barrier distribution for a âsuperheavy' nucleusâ-nucleus collision
Large-angle quasielastic scattering has been studied in a high-Z_1Z_2 nuclear reaction of the type leading to superheavy-element production by cold fusion. We show that despite the presence of strongly dissipative channels, and the complete absence of fusion, the notion of an external barrier distribution, determined by strong coupling to collective excitations of target and projectile, is still valid. Furthermore, our method allows us to deduce some properties of the deep-inelastic processes in this system