3,455 research outputs found

    Spin-Forster transfer in optically excited quantum dots

    Full text link
    The mechanisms of energy and spin transfer in quantum dot pairs coupled via the Coulomb interaction are studied. Exciton transfer can be resonant or phonon-assisted. In both cases, the transfer rates strongly depend on the resonance conditions. The spin selection rules in the transfer process come from the exchange and spin-orbit interactions. The character of energy dissipation in spin transfer is different than that in the traditional spin currents. The spin-dependent photon cross-correlation functions reflect the exciton transfer process. In addition, a mathematical method to calculate F\"orster transfer in crystalline nanostructures beyond the dipole-dipole approximation is described.Comment: 22 pages, 10 figures, Phys. Rev. B, in pres

    Ion-ion dynamic structure factor, acoustic modes and equation of state of two-temperature warm dense aluminum

    Full text link
    The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasi-equilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasi-equilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasi-equilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy and pressure is also presented

    3D sensors for the HL-LHC

    Full text link
    In order to increase its discovery potential, the Large Hadron Collider (LHC) accelerator will be upgraded in the next decade. The high luminosity LHC (HL-LHC) period demands new sensor technologies to cope with increasing radiation fluences and particle rates. The ATLAS experiment will replace the entire inner tracking detector with a completely new silicon-only system. 3D pixel sensors are promising candidates for the innermost layers of the Pixel detector due to their excellent radiation hardness at low operation voltages and low power dissipation at moderate temperatures. Recent developments of 3D sensors for the HL-LHC are presented.Comment: 8 pages, 5 figures, International Workshops on Radiation Imaging Detectors 201

    Resonant Energy Exchange between Atoms in Dispersing and Absorbing Surroundings

    Get PDF
    Within the framework of quantization of the macroscopic electromagnetic field, a master equation describing both the resonant dipole-dipole interaction (RDDI) and the resonant atom-field interaction (RAFI) in the presence of dispersing and absorbing macroscopic bodies is derived, with the relevant couplings being expressed in terms of the surroundings-assisted Green tensor. It is shown that under certain conditions the RDDI can be regarded as being governed by an effective Hamiltonian. The theory, which applies to both weak and strong atom-field coupling, is used to study the resonant energy exchange between two (two-level) atoms sharing initially a single excitation. In particular, it is shown that in the regime of weak atom-field coupling there is a time window, where the energy transfer follows a transfer-rate law of the type obtained by ordinary second-order perturbation theory. Finally, the spectrum of the light emitted during the energy transfer is studied and the line splittings are discussed.Comment: 9 pages, 5 figs, Proceedings of ICQO'2002, Raubichi, to appear in Optics and Spectroscop

    Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: the role of multipole effects

    Full text link
    We investigate theoretically the effects of interaction between an optical dipole (semiconductor quantum dot or molecule) and metal nanoparticles. The calculated absorption spectra of hybrid structures demonstrate strong effects of interference coming from the exciton-plasmon coupling. In particular, the absorption spectra acquire characteristic asymmetric lineshapes and strong anti-resonances. We present here an exact solution of the problem beyond the dipole approximation and find that the multipole treatment of the interaction is crucial for the understanding of strongly-interacting exciton-plasmon nano-systems. Interestingly, the visibility of the exciton resonance becomes greatly enhanced for small inter-particle distances due to the interference phenomenon, multipole effects, and electromagnetic enhancement. We find that the destructive interference is particularly strong. Using our exact theory, we show that the interference effects can be observed experimentally even in the exciting systems at room temperature.Comment: 9 page

    Pair creation of black holes joined by cosmic strings

    Get PDF
    We argue that production of charged black hole pairs joined by a cosmic string in the presence of a magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the black holes towards each other, opposing to the background field. An estimation of the production rate using the Euclidean action shows that the process is suppressed as compared to the formation of black holes without strings.Comment: 7 pages, LaTeX. Minor typos corrected

    Gain and time resolution of 45 μ\mum thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 101510^{15} neq_{eq}/cm2^2

    Full text link
    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μ\mum were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 101510^{15} neq_{eq}/cm2^2. The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10143\times10^{14} neq_{eq}/cm2^2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 101510^{15} neq_{eq}/cm2^2, the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.Comment: 17 page

    Fermi-surface topology of the iron pnictide LaFe2_2P2_2

    Full text link
    We report on a comprehensive de Haas--van Alphen (dHvA) study of the iron pnictide LaFe2_2P2_2. Our extensive density-functional band-structure calculations can well explain the measured angular-dependent dHvA frequencies. As salient feature, we observe only one quasi-two-dimensional Fermi-surface sheet, i.e., a hole-like Fermi-surface cylinder around Γ\Gamma, essential for s±s_\pm pairing, is missing. In spite of considerable mass enhancements due to many-body effects, LaFe2_2P2_2 shows no superconductivity. This is likely caused by the absence of any nesting between electron and hole bands.Comment: 5 pages, 4 figure

    The Space Density and Colors of Massive Galaxies at 2<z<3: the Predominance of Distant Red Galaxies

    Full text link
    Using the deep multi-wavelength MUSYC, GOODS, and FIRES surveys we construct a stellar mass-limited sample of galaxies at 2<z<3. The sample comprises 294 galaxies with M>10^11 Solar masses distributed over four independent fields with a total area of almost 400 sq arcmin. The mean number density of massive galaxies in this redshift range is (2.2+-0.6) x 10^-4 Mpc^-3. We present median values and 25th and 75th percentiles for the distributions of observed R mags, observed J-K colors, and rest-frame UV continuum slopes, M/L(V) ratios, and U-V colors. The galaxies show a large range in all these properties. The ``median galaxy'' is faint in the observer's optical (R=25.9), red in the observed near-IR (J-K=2.48), has a rest-frame UV spectrum which is relatively flat (beta=-0.4), and rest-frame optical colors resembling those of nearby spiral galaxies (U-V=0.62). We determine which galaxies would be selected as Lyman break galaxies (LBGs) or Distant Red Galaxies (DRGs, having J-K>2.3) in this mass-limited sample. By number DRGs make up 69% of the sample and LBGs 20%, with a small amount of overlap. By mass DRGs make up 77% and LBGs 17%. Neither technique provides a representative sample of massive galaxies at 2<z<3 as they only sample the extremes of the population. As we show here, multi-wavelength surveys with high quality photometry are essential for an unbiased census of massive galaxies in the early Universe. The main uncertainty in this analysis is our reliance on photometric redshifts; confirmation of the results presented here requires extensive near-infrared spectroscopy of optically-faint samples.Comment: Accepted for publication in ApJ Letter

    Constraint on the Assembly and Dynamics of Galaxies. II. Properties of Kiloparsec-Scale Clumps in Rest-Frame Optical Emission of z ~ 2 Star-Forming Galaxies

    Get PDF
    We study the properties of luminous stellar "clumps" identified in deep, high-resolution Hubble Space Telescope NIC2/F160W imaging at 1.6 μm of six z ~ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. Individual clumps contribute ~0.5%-15% of the galaxy-integrated rest-frame ≈5000 Å emission, with median of ≈2%; the total contribution of clump light ranges from 10% to 25%. The median intrinsic clump size and stellar mass are ~1 kpc and ~10^9 M_☉, in the ranges for clumps identified in rest-UV or line emission in other studies. The clump sizes and masses in the subset of disks are broadly consistent with expectations for clump formation through gravitational instabilities in gas-rich, turbulent disks given the host galaxies' global properties. By combining the NIC2 data with Advanced Camera for Surveys (ACS)/F814W imaging available for one source, and adaptive-optics-assisted SINFONI Hα data for another, we infer modest color, M/L, and stellar age variations within each galaxy. In these two objects, sets of clumps identified at different wavelengths do not fully overlap; NIC2-identified clumps tend to be redder/older than ACS- or Hα-identified clumps without rest-frame optical counterparts. There is evidence for a systematic trend of older ages at smaller galactocentric radii among the clumps, consistent with scenarios where inward migration of clumps transports material toward the central regions. From constraints on a bulge-like component at radii ≾1-3 kpc, none of the five disks in our sample appears to contain a compact massive stellar core, and we do not discern a trend of bulge stellar mass fraction with stellar age of the galaxy. Further observations are necessary to probe the buildup of stellar bulges and the role of clumps in this process
    corecore