184 research outputs found

    Dynamical Instability of Brane Solutions with a Self-Tuning Cosmological Constant

    Full text link
    A five-dimensional solution to Einstein's equations coupled to a scalar field has been proposed as a partial solution to the cosmological constant problem: the effect of arbitrary vacuum energy (tension) of a 3-brane is cancelled; however, the scalar field becomes singular at some finite proper distance in the extra dimension. We show that in the original model with a vanishing bulk potential for the scalar, the solution is a saddle point which is unstable to expansion or contraction of the brane world. We construct exact time-dependent solutions which generalize the static solution, and demonstrate that they do not conserve energy on the brane; thus they do not have an effective 4-D field theoretic description. When a bulk scalar field potential is added, the boundary conditions on the brane cannot be trivially satisfied, raising hope that the self-tuning mechanism may still give some insight into the cosmological constant problem in this case.Comment: 11 pages, 2 figure

    Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze

    Get PDF
    GFZ (German Research Centre for Geosciences) set up the Zugspitze Geodynamic Observatory Germany with a worldwide unique installation of a superconducting gravimeter at the summit of Mount Zugspitze on top of the Partnach spring catchment. This high alpine catchment is well instrumented, acts as natural lysimeter and has significant importance for water supply to its forelands, with a large mean annual precipitation of 2080ĝ€¯mm and a long seasonal snow cover period of 9 months, while showing a high sensitivity to climate change. However, regarding the majority of alpine regions worldwide, there is only limited knowledge on temporal water storage variations due to sparsely distributed hydrological and meteorological sensors and the large variability and complexity of signals in alpine terrain. This underlines the importance of well-equipped areas such as Mount Zugspitze serving as natural test laboratories for improved monitoring, understanding and prediction of alpine hydrological processes. The observatory superconducting gravimeter, OSG 052, supplements the existing sensor network as a novel hydrological sensor system for the direct observation of the integral gravity effect of total water storage variations in the alpine research catchment at Zugspitze. Besides the experimental set-up and the available data sets, the gravimetric methods and gravity residuals are presented based on the first 27 months of observations from 29 December 2018 to 31 March 2021. The snowpack is identified as being a primary contributor to seasonal water storage variations and, thus, to the gravity residuals with a signal range of up to 750ĝ€¯nms-2 corresponding to 1957ĝ€¯mm snow water equivalent measured with a snow scale at an altitude of 2420ĝ€¯m at the end of May 2019. Hydro-gravimetric sensitivity analysis reveal a snow-gravimetric footprint of up to 4ĝ€¯km distance around the gravimeter, with a dominant gravity contribution from the snowpack in the Partnach spring catchment. This shows that the hydro-gravimetric approach delivers representative integral insights into the water balance of this high alpine site. © Copyright

    Dynamical Supersymmetry Breaking in Standard-like Models with Intersecting D6-branes

    Full text link
    We address dynamical supersymmetry breaking within a N=1 supersymmetric Standard-like Model based on a Z_2 x Z_2 Type IIA orientifold with intersecting D6-branes. The model possesses an additional, confining gauge sector with the USp(2)_A x USp(2)_B x USp(4) gauge group, where the gaugino condensation mechanism allows for the breaking of supersymmetry and stabilizes moduli. We derive the leading contribution to the non-perturbative effective superpotential and determine numerically the minima of the supergravity potential. These minima break supersymmetry and fix two undetermined moduli, which in turn completely specify the gauge couplings at the string scale. For this specific construction the minima have a negative cosmological constant. We expect that for other supersymmetric Standard-like models with intersecting D6-branes, which also possess confining gauge sectors, the supersymmetry breaking mechanism would have qualitatively similar features.Comment: 19 pages, 1 figur

    Intersecting brane world models from D8-branes on (T^2 x T^4/Z_3)/Omega R_1 type IIA orientifolds

    Full text link
    We present orientifold models of type IIA string theory with D8-branes compactified on a two torus times a four dimensional orbifold. The orientifold group is chosen such that one coordinate of the two torus is reversed when applying worldsheet parity. RR tadpole cancellation requires D8-branes which wrap 1-cycles on the two torus and transform non-trivially under the orbifold group. These models are T-dual to orientifolds with D4-branes only which admit large volume compactifications. The intersections of the D8-branes are chosen in such a way that supersymmetry is broken in the open string sector and chiral fermions arise. Stability of the models is discussed in the context of NSNS tadpoles. Two examples with the SM gauge group and two left-right symmetric models are given.Comment: 30 pages, 7 figure

    Braneworld models with a non-minimally coupled phantom bulk field: a simple way to obtain the -1-crossing at late times

    Full text link
    We investigate general braneworld models, with a non-minimally coupled phantom bulk field and arbitrary brane and bulk matter contents. We show that the effective dark energy of the brane-universe acquires a dynamical nature, as a result of the non-minimal coupling which provides a mechanism for an indirect "bulk-brane interaction" through gravity. For late-time cosmological evolution and without resorting to special ansatzes or to specific areas of the parameter space, we show that the -1-crossing of its equation-of-state parameter is general and can be easily achieved. As an example we provide a simple, but sufficiently general, approximate analytical solution, that presents the crossing behavior.Comment: 11 pages, 2 figure

    Generalised permutation branes

    Full text link
    We propose a new class of non-factorising D-branes in the product group GxG where the fluxes and metrics on the two factors do not necessarily coincide. They generalise the maximally symmetric permutation branes which are known to exist when the fluxes agree, but break the symmetry down to the diagonal current algebra in the generic case. Evidence for the existence of these branes comes from a Lagrangian description for the open string world-sheet and from effective Dirac-Born-Infeld theory. We state the geometry, gauge fields and, in the case of SU(2)xSU(2), tensions and partial results on the open string spectrum. In the latter case the generalised permutation branes provide a natural and complete explanation for the charges predicted by K-theory including their torsion.Comment: 33 pages, 6 figures, v2: Extended discussion of K-theory interpretation of our branes for products of higher rank groups in the conclusions; v3: Correction of formula (35) and adjustment of the discussion below equation (45) (no change of result). Footnote 9 points out a previously unnoticed subtlety and provides a reference to a more detailed discussio

    DBI analysis of generalised permutation branes

    Get PDF
    We investigate D-branes on the product GxG of two group manifolds described as Wess-Zumino-Novikov-Witten models. When the levels of the two groups coincide, it is well known that there exist permutation D-branes which are twisted by the automorphism exchanging the two factors. When the levels are different, the D-brane charge group demands that there should be generalisations of these permutation D-branes, and a geometric construction for them was proposed in hep-th/0509153. We give further evidence for this proposal by showing that the generalised permutation D-branes satisfy the Dirac-Born-Infeld equations of motion for arbitrary compact, simply connected and simple Lie groups G.Comment: 19 pages, computation in section 3.5.1 corrected, conclusions unchange

    Positive tension 3-branes in an AdS5AdS_{5} bulk

    Full text link
    In this work, we review and extend the so-called consistency conditions for the existence of a braneworld scenario in arbitrary dimensions in the Brans-Dicke (BD) gravitational theory. After that, we consider the particular case of a five-dimensional scenario which seems to have phenomenological interesting implications. We show that, in the BD framework, it is possible to achieve necessary conditions pointing to the possibility of accommodating branes with positive tensions in an AdS bulk by the presence of the additional BD scalar field, avoiding in this way the necessity of including unstable objects in the compactification scheme. Furthermore, in the context of time variable brane tension, it is shown that the brane tension may change its sign, following the bulk cosmological constant sign.Comment: 15 pages, new version to appear in JHE

    Orientifolds of K3 and Calabi-Yau Manifolds with Intersecting D-branes

    Full text link
    We investigate orientifolds of type II string theory on K3 and Calabi-Yau 3-folds with intersecting D-branes wrapping special Lagrangian cycles. We determine quite generically the chiral massless spectrum in terms of topological invariants and discuss both orbifold examples and algebraic realizations in detail. Intriguingly, the developed techniques provide an elegant way to figure out the chiral sector of orientifold models without computing any explicit string partition function. As a new example we derive a non-supersymmetric Standard-like Model from an orientifold of type IIA on the quintic Calabi-Yau 3-fold with wrapped D6-branes. In the case of supersymmetric intersecting brane models on Calabi-Yau manifolds we discuss the D-term and F-term potentials, the effective gauge couplings and the Green-Schwarz mechanism. The mirror symmetric formulation of this construction is provided within type IIB theory. We finally include a short discussion about the lift of these models from type IIB on K3 to F-theory and from type IIA on Calabi-Yau 3-folds to M-theory on G_2 manifolds.Comment: 82 pages, harvmac, 5 figures. v2: references added. v3: T^6 orientifold corrected, JHEP versio

    Searching singlet extensions of the supersymmetric standard model in Z6II Z_{6-II} orbifold compactification of heterotic string

    Full text link
    We search for supersymmetric standard model realizations with extra singlets and extra U(1) U(1) using the heterotic string compactification on the Z6II Z_{6-II} orbifold with two Wilson lines. We analyze the vacuum restabilization mechanism for three representative Pati-Salam string models obtained in the literature and present detailed results for the effective superpotential compatible with the string selection rules. An automated selection of semi-realistic vacua along flat directions in the non-Abelian singlet modes field space is performed by requiring the presence of massless pairs of electroweak Higgs bosons having trilinear superpotential couplings with massless singlet modes and the decoupling of color triplet exotic modes needed to suppress BB and L L number violating processes.Comment: revtex4 format, 21 pages, 7 tables, shortened version added reference
    corecore