CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
Authors
C. Förste
C. Voigt
+9 more
F. Flechtner
F. Flechtner
F. Koch
H. Pflug
K. Schulz
K.-F. Wetzel
L. Timmen
N. Stolarczuk
T. Rehm
Publication date
1 January 2021
Publisher
Göttingen : Copernicus
Doi
Cite
Abstract
GFZ (German Research Centre for Geosciences) set up the Zugspitze Geodynamic Observatory Germany with a worldwide unique installation of a superconducting gravimeter at the summit of Mount Zugspitze on top of the Partnach spring catchment. This high alpine catchment is well instrumented, acts as natural lysimeter and has significant importance for water supply to its forelands, with a large mean annual precipitation of 2080ĝ€¯mm and a long seasonal snow cover period of 9 months, while showing a high sensitivity to climate change. However, regarding the majority of alpine regions worldwide, there is only limited knowledge on temporal water storage variations due to sparsely distributed hydrological and meteorological sensors and the large variability and complexity of signals in alpine terrain. This underlines the importance of well-equipped areas such as Mount Zugspitze serving as natural test laboratories for improved monitoring, understanding and prediction of alpine hydrological processes. The observatory superconducting gravimeter, OSG 052, supplements the existing sensor network as a novel hydrological sensor system for the direct observation of the integral gravity effect of total water storage variations in the alpine research catchment at Zugspitze. Besides the experimental set-up and the available data sets, the gravimetric methods and gravity residuals are presented based on the first 27 months of observations from 29 December 2018 to 31 March 2021. The snowpack is identified as being a primary contributor to seasonal water storage variations and, thus, to the gravity residuals with a signal range of up to 750ĝ€¯nms-2 corresponding to 1957ĝ€¯mm snow water equivalent measured with a snow scale at an altitude of 2420ĝ€¯m at the end of May 2019. Hydro-gravimetric sensitivity analysis reveal a snow-gravimetric footprint of up to 4ĝ€¯km distance around the gravimeter, with a dominant gravity contribution from the snowpack in the Partnach spring catchment. This shows that the hydro-gravimetric approach delivers representative integral insights into the water balance of this high alpine site. © Copyright
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:5e3f6bbdb...
Last time updated on 08/12/2021
Institutional Repository of Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repo.uni-hannover.de:12345...
Last time updated on 28/06/2025