349 research outputs found
LINE-1 Endonuclease-Dependent Retrotranspositional Events Causing Human Genetic Disease: Mutation Detection Bias and Multiple Mechanisms of Target Gene Disruption
LINE-1 (L1) elements are the most abundant autonomous non-LTR retrotransposons in the human genome. Having recently performed a meta-analysis of L1 endonuclease-mediated retrotranspositional events causing human genetic disease, we have extended this study by focusing on two key issues, namely, mutation detection bias and the multiplicity of mechanisms of target gene disruption. Our analysis suggests that whereas an ascertainment bias may have generally militated against the detection of autosomal L1-mediated insertions, autosomal L1 direct insertions could have been disproportionately overlooked owing to their unusually large size. Our analysis has also indicated that the mechanisms underlying the functional disruption of target genes by L1-mediated retrotranspositional events are likely to be dependent on several different factors such as the type of insertion (L1 direct, L1 trans-driven Alu, or SVA), the precise locations of the inserted sequences within the target gene regions, the length of the inserted sequences, and possibly also their orientation
The Calpain, Caspase 12, Caspase 3 Cascade Leading to Apoptosis Is Altered in F508del-CFTR Expressing Cells
In cystic fibrosis (CF), the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER). We previously showed that the unfolded protein response (UPR) may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt) and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF
Discrimination of three mutational events that result in a disruption of the R122 primary autolysis site of the human cationic trypsinogen (PRSS1) by denaturing high performance liquid chromatography
BACKGROUND: R122, the primary autolysis site of the human cationic trypsinogen (PRSS1), constitutes an important "self-destruct" or "fail-safe" defensive mechanism against premature trypsin activation within the pancreas. Disruption of this site by a missense mutation, R122H, was found to cause hereditary pancreatitis. In addition to a c.365G>A (CGC>CAC) single nucleotide substitution, a c.365~366GC>AT (CGC>CAT) gene conversion event in exon 3 of PRSS1 was also found to result in a R122H mutation. This imposes a serious concern on the genotyping of pancreatitis by a widely used polymerase chain reaction-restriction fragment length polymorphism assay, which could only detect the commonest c.365G>A variant. MATERIALS AND METHODS: DNA samples containing either the known c.365G>A or c.365~366GC>AT variant in exon 3 of PRSS1 were used as positive controls to establish a denaturing high performance liquid chromatography (DHPLC) assay. RESULTS: DHPLC could readily discriminate the two known different mutational events resulting in the R122H mutation. More importantly, under the same experimental conditions, it identified a further mutational event that also occurs in the R122 primary autolysis site but results in a different amino acid substitution: c.364C>T (CGC>TGC; R122C). CONCLUSIONS: A rapid, simple, and low-cost assay for detecting both the known and new mutations occuring in the R122 primary autolysis site of PRSS1 was established. In addition, the newly found R122C variant represents a likely pancreatitis-predisposing mutation
Evidence for decline in the incidence of cystic fibrosis: a 35-year observational study in Brittany, France
<p>Abstract</p> <p>Background</p> <p>Cystic fibrosis (CF) is an autosomal recessive disorder whose incidence has long been estimated as 1/2500 live births in Caucasians. Expanding implementation of newborn screening (NBS) programs now allows a better monitoring of the disease incidence, what is essential to make reliable predictions for disease management. This study assessed time trends in the birth incidence of CF over a long period (35 years: 1975-2009) in an area where CF is frequent (Brittany, France) and where NBS has been implemented for more than 20 years.</p> <p>Methods</p> <p>This study enrolled CF patients born in Brittany between January 1<sup>st </sup>1975 and December 31<sup>st </sup>2009 (n = 483). Time trends in incidence were examined using Poisson regression and mainly expressed using the average percent change (APC).</p> <p>Results</p> <p>The average number of patients born each year declined from 18.6 in the late 1970's (period 1975-79) to 11.6 nowadays (period 2005-09). The corresponding incidence rates dropped from 1/1983 to 1/3268, which represented a decline close to 40% between these two periods (APC = -39.3%, 95% CI = -55.8% to -16.7%, p = 0.0020). A clear breakpoint in incidence rate was observed at the end of the 1980's (p < 0.0001). However, the incidence rate has remained quite stable since that time (annual APC = -1.0%, 95% CI = -3.0% to 1.1%, p = 0.3516).</p> <p>Conclusions</p> <p>This study provides an accurate picture of the evolution of the incidence of a genetic disease over a long period and highlights how it is influenced by the health policies implemented. We observed a 40% drop in incidence in our area which seems consecutive to the availability of prenatal diagnosis.</p
Gene conversion in human genetic disease
Gene conversion is a specific type of homologous recombination that involves the unidirectional transfer of genetic material from a ‘donor’ sequence to a highly homologous ‘acceptor’. We have recently reviewed the molecular mechanisms underlying gene conversion, explored the key part that this process has played in fashioning extant human genes, and performed a meta-analysis of gene-conversion events known to have caused human genetic disease. Here we shall briefly summarize some of the latest developments in the study of pathogenic gene conversion events, including (i) the emerging idea of minimal efficient sequence homology (MESH) for homologous recombination, (ii) the local DNA sequence features that appear to predispose to gene conversion, (iii) a mechanistic comparison of gene conversion and transient hypermutability, and (iv) recently reported examples of pathogenic gene conversion events
Discovery and functional annotation of PRSS1 promoter variants in chronic pancreatitis
Recently, our resequencing of the promoter region of PRSS1 in French Caucasian individuals led to the identification of a functional variant (c.-204C > A) that is in perfect linkage disequilibrium with the “chronic pancreatitis (CP)-protective” PRSS1 c.-408C > T variant. Here, we extended the resequencing to 626 French Caucasians (242 idiopathic CP patients and 384 controls). We discovered three additional variants (c.-184G > A, c.-173C > T, and c.-147C > T), each being found only once in either patients or controls. We analyzed these three variants, together with a known PRSS1 promoter variant (c.-30_-28delTCC) long considered to be causative for CP, by luciferase promoter reporter assay in AR42J cells treated with dexamethasone. This analysis revealed that c.-30_-28delTCC resulted in reduced rather than increased PRSS1 gene expression, suggesting that it is not a CP risk factor as originally claimed. We provide evidence that c.-147C > T probably confers protection against CP by reducing the affinity of an ATF4 transcription factor binding site
HFE-Related Hemochromatosis: The Haptoglobin 2-2 Type Has a Significant but Limited Influence on Phenotypic Expression of the Predominant p.C282Y Homozygous Genotype
Phenotypic expression of the common p.C282Y/p.C282Y HFE-related hemochromatosis genotype is heterogeneous and depends on a complex interplay of genetic and non-genetic factors. Haptoglobin has a crucial role in free hemoglobin iron recovery, and exists as three major types: Hp1-1, Hp2-1 and Hp2-2. Hp2-2 favors endocytosis of hemoglobin iron in monocytes/macrophages, resulting in partial iron retention and increased intracellular ferritin levels. This situation is generally not expected to severely affect iron homeostasis, but was found to correlate with elevated serum iron indices in healthy men. Whether the Hp2-2 genotype acts as a modifier in HFE-related hemochromatosis is unclear.
In this study we investigated influence of Hp2-2 and of potential confounders on the iron indices of 351 p.C282Y homozygous patients. We conclude that there is a cause-and-effect relationship between the Hp2-2 genotype and increased iron indices in p.C282Y homozygous patients. The Hp2-2 effect is, however, limited and only apparent in males
Digging deeper into the intronic sequences of the SPINK1 gene [Letter]
We read with great interest the recent paper by Beer and Sahin-Tóth1 addressing the ‘missing heritability’ observed in approximately 60% of German cases of chronic pancreatitis.2 These authors opined that ‘discovery studies tend to focus on exons and exon–intron boundaries and may thus miss many intronic variants’.1 This premise seems eminently reasonable, given the generally much larger size of intronic sequences as compared with the coding sequences of protein-coding genes. However, there is a trade-off here. On the one hand, larger sequence size means larger target size for mutation, and hence the greater the number of mutations that could be missed if intronic sequences were not screened. On the other hand, to be of pathological significance, an intronic mutation must either create a new functional splicing donor or acceptor site or alternatively impact a functional sequence motif responsible for regulating splicing (eg, an intronic splicing enhancer), which depends upon many additional factors other than just sequence length. As yet, it is unclear what the ratio of pathological intronic:exonic variants will turn out to be, although intronic mutations are
Using Bacterial Artificial Chromosomes in Leukemia Research: The Experience at the University Cytogenetics Laboratory in Brest, France
The development of the bacterial artificial chromosome (BAC) system was driven in part by the human genome project in order to construct genomic DNA libraries and physical maps for genomic sequencing. The availability of BAC clones has become a valuable tool for identifying cancer genes. We report here our experience in identifying genes located at breakpoints of chromosomal rearrangements and in defining the size and boundaries of deletions in hematological diseases. The methodology used in our laboratory consists of a three-step approach using conventional cytogenetics followed by FISH with commercial probes, then BAC clones. One limitation to the BAC system is that it can only accommodate inserts of up to 300 kb. As a consequence, analyzing the extent of deletions requires a large amount of material. Array comparative genomic hybridization (array-CGH) using a BAC/PAC system can be an alternative. However, this technique has limitations also, and it cannot be used to identify candidate genes at breakpoints of chromosomal rearrangements such as translocations, insertions, and inversions
- …