5 research outputs found

    Methodological framework for World Health Organization estimates of the global burden of foodborne disease

    Get PDF
    Background: The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization to estimate the global burden of foodborne diseases (FBDs). This paper describes the methodological framework developed by FERG's Computational Task Force to transform epidemiological information into FBD burden estimates. Methods and Findings: The global and regional burden of 31 FBDs was quantified, along with limited estimates for 5 other FBDs, using Disability-Adjusted Life Years in a hazard- and incidence-based approach. To accomplish this task, the following workflow was defined: outline of disease models and collection of epidemiological data; design and completion of a database template; development of an imputation model; identification of disability weights; probabilistic burden assessment; and estimating the proportion of the disease burden by each hazard that is attributable to exposure by food (i.e., source attribution). All computations were performed in R and the different functions were compiled in the R package 'FERG'. Traceability and transparency were ensured by sharing results and methods in an interactive way with all FERG members throughout the process. Conclusions: We developed a comprehensive framework for estimating the global burden of FBDs, in which methodological simplicity and transparency were key elements. All the tools developed have been made available and can be translated into a user-friendly national toolkit for studying and monitoring food safety at the local level

    Early intensification of backyard poultry systems in the tropics: A case study

    No full text
    Poultry production is an important way of enhancing the livelihoods of rural populations, especially in low- and middle-income countries (LMICs). As poultry production in LMICs remains dominated by backyard systems with low inputs and low outputs, considerable yield gaps exist. Intensification can increase poultry productivity, production and income. This process is relatively recent in LMICs compared to high-income countries. The management practices and the constraints faced by smallholders trying to scale-up their production, in the early stages of intensification, are poorly understood and described. We thus investigated the features of the small-scale commercial chicken sector in a rural area distant from major production centres. We surveyed 111 commercial chicken farms in Kenya in 2016. We targeted farms that sell the majority of their production, owning at least 50 chickens, partly or wholly confined and provided with feeds. We developed a typology of semi-intensive farms. Farms were found mainly to raise dual-purpose chickens of local and improved breeds, in association with crops and were not specialized in any single product or market. We identified four types of semi-intensive farms that were characterized based on two groups of variables related to intensification and accessibility: (i) remote, small-scale old farms, with small flocks, growing a lot of their own feed; (ii) medium-scale, old farms with a larger flock and well located in relation to markets and (iii) large-scale recently established farms, with large flocks, (iii-a) well located and buying chicks from third-party providers and (iii-b) remotely located and hatching their own chicks. The semi-intensive farms we surveyed were highly heterogeneous in terms of size, age, accessibility, management, opportunities and challenges. Farm location affects market access and influences the opportunities available to farmers, resulting in further diversity in farm profiles. The future of these semi-intensive farms could be compromised by several factors, including the competition with large-scale intensive farmers and with importations. Our study suggests that intensification trajectories in rural areas of LMICs are potentially complex, diverse and non-linear. A better understanding of intensification trajectories should, however, be based on longitudinal data. This could, in turn, help designing interventions to support small-scale farmers.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Characteristics of Staphylococcus aureus isolated from patients in Busia County Referral Hospital, Kenya

    No full text
    Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. aureus nasal isolates, from inpatients at Busia County Referral Hospital (BCRH) were analyzed. A total of 263 inpatients were randomly sampled, from May to July 2015. The majority of inpatients (85.9%) were treated empirically with antimicrobials, including ceftriaxone (65.8%) and metronidazole (49.8%). Thirty S. aureus isolates were cultured from 29 inpatients with a prevalence of 11% (10.3% methicillin-susceptible S. aureus (MSSA), 0.8% methicillin resistant S. aureus (MRSA)). Phenotypic and genotypic resistance was highest to penicillin-G (96.8%), trimethoprim (73.3%), and tetracycline (13.3%) with 20% of isolates classified as multidrug resistant. Virulence genes, Panton-Valentine leukocidin (pvl), toxic shock syndrome toxin-1 (tsst-1), and sasX gene were detected in 16.7%, 23.3% and 3.3% of isolates. Phylogenetic analysis showed 4 predominant clonal complexes CC152, CC8, CC80, and CC508. This study has identified that inpatients of BCRH were carriers of S. aureus harbouring virulence genes and resistance to a range of antibiotics. This may indicate a public health risk to other patients and the community

    Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: An epidemiological study

    Get PDF
    Background Antimicrobial resistance is one of the great challenges facing global health security in the modern era. Wildlife, particularly those that use urban environments, are an important but understudied component of epidemiology of antimicrobial resistance. We investigated antimicrobial resistance overlap between sympatric wildlife, humans, livestock, and their shared environment across the developing city of Nairobi, Kenya. We use these data to examine the role of urban wildlife in the spread of clinically relevant antimicrobial resistance. Methods 99 households across Nairobi were randomly selected on the basis of socioeconomic stratification. A detailed survey was administered to household occupants, and samples (n=2102) were collected from the faeces of 75 wildlife species inhabiting household compounds (ie, the household and its perimeter; n=849), 13 livestock species (n=656), and humans (n=333), and from the external environment (n=288). Escherichia coli, our sentinel organism, was cultured and a single isolate from each sample tested for sensitivity to 13 antibiotics. Diversity of antimicrobial resistant phenotypes was compared between urban wildlife, humans, livestock, and the environment, to investigate whether wildlife are a net source for antimicrobial resistance in Nairobi. Generalised linear mixed models were used to determine whether the prevalence of antimicrobial resistant phenotypes and multidrug-resistant E coli carriage in urban wildlife is linked to variation in ecological traits, such as foraging behaviour, and to determine household-level risk factors for sharing of antimicrobial resistance between humans, wildlife, and livestock. Findings E coli were isolated from 485 samples collected from wildlife between Sept 6,2015, and Sept 28, 2016. Wildlife carried a low prevalence of E coli isolates susceptible to all antibiotics tested (45 [9%] of 485 samples) and a high prevalence of clinically relevant multidrug resistance (252 [52%] of 485 samples), which varied between taxa and by foraging traits. Multiple isolates were resistant to one agent from at least seven antimicrobial classes tested for, and a single isolate was resistant to all antibiotics tested for in the study. The phenotypic diversity of antimicrobial-resistant E coli in wildlife was lower than in livestock, humans, and the environment. Within household compounds, statistical models identified two interfaces for exchange of antimicrobial resistance: between both rodents, humans and their rubbish, and seed-eating birds, humans and their rubbish; and between seed-eating birds, cattle, and bovine manure. Interpretation Urban wildlife carry a high burden of clinically relevant antimicrobial-resistant E coli in Nairobi, exhibiting resistance to drugs considered crucial for human medicine by WHO. Identifiable traits of the wildlife contribute to this exposure; however, compared with humans, livestock, and the environment, low phenotypic diversity in wildlife is consistent with the hypothesis that wildlife are a net sink rather than source of clinically relevant resistance. Wildlife that interact closely with humans, livestock, and both human and livestock waste within households, are exposed to more antimicrobial resistant phenotypes, and could therefore act as conduits for the dissemination of clinically relevant antimicrobial resistance to the wider environment. These results provide novel insight into the broader epidemiology of antimicrobial resistance in complex urban environments, characteristic of lower-middle-income countries
    corecore