66 research outputs found

    Polarimetry in X- and Gamma-Ray Astronomy: The Ultimate Dimension

    Get PDF
    Polarization has been a powerful diagnostic tool in radio, microwave, and visible astronomy, providing details of photonproduction mechanisms on much smaller scales than can bedirectly imaged or deduced from photon intensity and energyalone. While polarimetry at other these wavebands (radio,microwave, and optical) is an established technique, highenergy astrophysics lags far behind in this respect. Yet polarizationanalysis has the potential of revealing many detailsabout the magnetic fields, geometries, and emission mechanismsfound in high energy emitting sources. Deviations fromspherical symmetry and/or the presence of ordered magneticfields give rise to polarized radiation: some examples includeanisotropy in solar flares, the presence of jets in microquasarsand blazars, accretion disks around stellar and massive blackholes, accreting and rotation-powered pulsars, and beams ingamma-ray bursts. In addition, null polarization detectionsfrom gamma-ray bursts at x-ray energies have been usedas a test of fundamental physics by placing limits on the possibleviolation of Lorentz invariance

    CdTe/CZT spectrometers with 3-D imaging capabilities

    Get PDF
    Semiconductor detector technology has dramatically changed the broad field of x-ray and ?-ray spectroscopy and imaging. Semiconductor detectors, originally developed for particle physics applications, are now widely used for x/?-ray spectroscopy and imaging in a wide variety of fields, including, for example, x-ray fluorescence, ?-ray monitoring and localization, noninvasive inspection and analysis, astronomy, and diagnostic medicine. The success of semiconductor detectors is due to several unique characteristics, such as excellent energy resolution, high detection efficiency, and the possibility of development of compact and highly segmented detection systems. Among semiconductor devices, silicon (Si) detectors are the key detectors in the soft x-ray band (15 keV) and will continue to be the first choice for laboratory-based high-performance spectrometers [3]. © 2015 by Taylor & Francis Group, LLC

    Twin shaping filter technique for signals compensation in CZT detectors grown by the vertical bridgman method

    Get PDF
    CdTe/CdZnTe is a consolidated material to realize detectors for a large variety of applications, such as medical, industrial, and space research. An Italian collaboration, involving the CNR/IMEM and INAF/IASF institutes, was born some years ago with the aim to develop a national capability to produce CZT detectors starting from the material growth to the final detection device. Some important features of these detectors (pulse height, energy resolution, photopeak efficiency) are affected by the charge collection efficiency: the low mobility of the charge carriers (particularly the holes) and trapping/detrapping phenomena can degrade the CdTe/CZT detectors response, depending on the distance between the charge formation position and the collecting electrodes. Several efforts have been made to improve the detection efficiency as well as the energy resolution, using both the optimization of the electrode geometry (drift strip technique, coplanar-grid, small pixel effect) and pulse height compensation methods to overcome the hole trapping problem. We have studied a bi-parametric method that uses a twin pulse shaping active filter to analyze the same signal: one slow, which is proportional to the energy of the photon, and one fast, which depends on the position of the interaction with respect to the collecting electrode. The experimental results obtained with the application of this bi-parametric technique on planar CZT detectors of good quality grown by the Vertical Bridgman method at CNR/IMEM are presented as a function of the bias voltage, photon energy and shaping time pairs

    Interface shape control and tellurium inclusion concentration distribution in CdZnTe crystals grown by vertical Bridgman for X-ray detector applications

    Get PDF
    In spite of the efforts devoted to the task, many problems connected with the growth of CdZnTe (Zn>0) crystals are still unresolved, in particular tellurium inclusion density control, large single crystalline yield, seeding, and interface shape control. Moreover, also the electrical properties of the crystals (high resistivity and mobility-lifetime product) must be taken into account if detector performances have to be improved. In this work, the authors report on the growth and characterization of several CdZnTe crystals (Zn=10%) by vertical Bridgman, with and without the use of boron oxide as encapsulant. Different techniques were used to characterize the crystals: i) PL mapping for determining interface shape and to study the nucleation ii) a novel IR mapping apparatus to obtain fully 3D reconstruction of the inclusion distribution iii) X-ray detector characterization by means of nuclear sources to study the transport properties of the material (with mobility-lifetime product for electrons up to 6x10-3 cm2/V)

    Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    Get PDF
    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors

    Charge Transport Properties in CZT Detectors Grown by the Vertical Bridgman Technique

    Get PDF
    Great efforts are being presently devoted to the development of CdTe and CdZnTe detectors for a large variety of applications, such as medical, industrial, and space research. We present the spectroscopic properties of some CZT crystals grown by the standard vertical Bridgman method and by the boron oxide encapsulated vertical Bridgman method, which has been recently implemented at IMEM-CNR. By this technique the crystal is grown in an open quartz crucible fully encapsulated by a thin layer of liquid boron oxide. This technique prevent the crystal-crucible contact allowing larger single grains with lower dislocation density to be obtained. Several mono-electrode detectors were realized with two planar gold contacts. The samples are characterized by an active area of ≈4x4 mm2 or ≈7x7 mm2 and with thickness ranging from 1 to 2 mm. The charge transport properties of the detectors have been studied by mobility-lifetime (μτ) product measurements, carried out at the European Synchrotron Radiation Facility (Grenoble) in PTF configuration, where the impinging beam direction is orthogonal to the collecting electric field. We have performed several fine scans between the electrodes with a beam spot of 10x10 μm2 at different energies from 60 keV to 400 keV. In this work we present the test results in terms of μτ product of both charge carriers and an evaluation of the spectroscopic response uniformity across the sensitive volume of tested samples
    corecore