research

Polarimetry in X- and Gamma-Ray Astronomy: The Ultimate Dimension

Abstract

Polarization has been a powerful diagnostic tool in radio, microwave, and visible astronomy, providing details of photonproduction mechanisms on much smaller scales than can bedirectly imaged or deduced from photon intensity and energyalone. While polarimetry at other these wavebands (radio,microwave, and optical) is an established technique, highenergy astrophysics lags far behind in this respect. Yet polarizationanalysis has the potential of revealing many detailsabout the magnetic fields, geometries, and emission mechanismsfound in high energy emitting sources. Deviations fromspherical symmetry and/or the presence of ordered magneticfields give rise to polarized radiation: some examples includeanisotropy in solar flares, the presence of jets in microquasarsand blazars, accretion disks around stellar and massive blackholes, accreting and rotation-powered pulsars, and beams ingamma-ray bursts. In addition, null polarization detectionsfrom gamma-ray bursts at x-ray energies have been usedas a test of fundamental physics by placing limits on the possibleviolation of Lorentz invariance

    Similar works