712 research outputs found
Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2 or 3D meshes
We study a colocated cell centered finite volume method for the approximation
of the incompressible Navier-Stokes equations posed on a 2D or 3D finite
domain. The discrete unknowns are the components of the velocity and the
pressures, all of them colocated at the center of the cells of a unique mesh;
hence the need for a stabilization technique, which we choose of the
Brezzi-Pitk\"aranta type. The scheme features two essential properties: the
discrete gradient is the transposed of the divergence terms and the discrete
trilinear form associated to nonlinear advective terms vanishes on discrete
divergence free velocity fields. As a consequence, the scheme is proved to be
unconditionally stable and convergent for the Stokes problem, the steady and
the transient Navier-Stokes equations. In this latter case, for a given
sequence of approximate solutions computed on meshes the size of which tends to
zero, we prove, up to a subsequence, the -convergence of the components of
the velocity, and, in the steady case, the weak -convergence of the
pressure. The proof relies on the study of space and time translates of
approximate solutions, which allows the application of Kolmogorov's theorem.
The limit of this subsequence is then shown to be a weak solution of the
Navier-Stokes equations. Numerical examples are performed to obtain numerical
convergence rates in both the linear and the nonlinear case.Comment: submitted September 0
A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods
We investigate the connections between several recent methods for the
discretization of anisotropic heterogeneous diffusion operators on general
grids. We prove that the Mimetic Finite Difference scheme, the Hybrid Finite
Volume scheme and the Mixed Finite Volume scheme are in fact identical up to
some slight generalizations. As a consequence, some of the mathematical results
obtained for each of the method (such as convergence properties or error
estimates) may be extended to the unified common framework. We then focus on
the relationships between this unified method and nonconforming Finite Element
schemes or Mixed Finite Element schemes, obtaining as a by-product an explicit
lifting operator close to the ones used in some theoretical studies of the
Mimetic Finite Difference scheme. We also show that for isotropic operators, on
particular meshes such as triangular meshes with acute angles, the unified
method boils down to the well-known efficient two-point flux Finite Volume
scheme
The gradient discretisation method for linear advection problems
We adapt the Gradient Discretisation Method (GDM), originally designed for
elliptic and parabolic partial differential equations, to the case of a linear
scalar hyperbolic equations. This enables the simultaneous design and
convergence analysis of various numerical schemes, corresponding to the methods
known to be GDMs, such as finite elements (conforming or non-conforming,
standard or mass-lumped), finite volumes on rectangular or simplicial grids,
and other recent methods developed for general polytopal meshes. The scheme is
of centred type, with added linear or non-linear numerical diffusion. We
complement the convergence analysis with numerical tests based on the
mass-lumped P1 conforming and non conforming finite element and on the hybrid
finite volume method
A unified analysis of elliptic problems with various boundary conditions and their approximation
We design an abstract setting for the approximation in Banach spaces of
operators acting in duality. A typical example are the gradient and divergence
operators in Lebesgue--Sobolev spaces on a bounded domain. We apply this
abstract setting to the numerical approximation of Leray-Lions type problems,
which include in particular linear diffusion. The main interest of the abstract
setting is to provide a unified convergence analysis that simultaneously covers
(i) all usual boundary conditions, (ii) several approximation methods. The
considered approximations can be conforming, or not (that is, the approximation
functions can belong to the energy space of the problem, or not), and include
classical as well as recent numerical schemes. Convergence results and error
estimates are given. We finally briefly show how the abstract setting can also
be applied to other models, including flows in fractured medium, elasticity
equations and diffusion equations on manifolds. A by-product of the analysis is
an apparently novel result on the equivalence between general Poincar{\'e}
inequalities and the surjectivity of the divergence operator in appropriate
spaces
Uniform-in-time convergence of numerical schemes for Richards' and Stefan's models
We prove that all Gradient Schemes - which include Finite Element, Mixed Finite Element, Finite Volume methods - converge uniformly in time when applied to a family of nonlinear parabolic equations which contains Richards and Stefan's models. We also provide numerical results to confirm our theoretical analysis
A proof of convergence of a finite volume scheme for modified steady Richardsâ equation describing transport processes in the pressing section of a paper machine
A number of water flow problems in porous media are modelled by Richardsâ equation [1]. There exist a lot of different applications of this model. We are concerned with the simulation of the pressing section of a paper machine. This part of the industrial process provides the dewatering of the paper layer by the use of clothings, i.e. press felts, which absorb the water during pressing [2]. A system of nips are formed in the simplest case by rolls, which increase sheet dryness by pressing against each other (see Figure 1). A lot of theoretical studies were done for Richardsâ equation (see [3], [4] and references therein). Most articles consider the case of x-independent coefficients. This simplifies the system considerably since, after Kirchhoffâs transformation of the problem, the elliptic operator becomes linear. In our case this condition is not satisfied and we have to consider nonlinear operator of second order. Moreover, all these articles are concerned with the nonstationary problem, while we are interested in the stationary case. Due to complexity of the physical process our problem has a specific feature. An additional convective term appears in our model because the porous media moves with the constant velocity through the pressing rolls. This term is zero in immobile porous media. We are not aware of papers, which deal with such kind of modified steady Richardsâ problem. The goal of this paper is to obtain the stability results, to show the existence of a solution to the discrete problem, to prove the convergence of the approximate solution to the weak solution of the modified steady Richardsâ equation, which describes the transport processes in the pressing section. In Section 2 we present the model which we consider. In Section 3 a numerical scheme obtained by the finite volume method is given. The main part of this paper is theoretical studies, which are given in Section 4. Section 5 presents a numerical experiment. The conclusion of this work is given in Section 6
A Gradient Scheme for the Discretization of Richards Equation
International audienceWe propose a finite volume method on general meshes for the discretiza-tion of Richards equation, an elliptic-parabolic equation modeling groundwater flow. The diffusion term, which can be anisotropic and heterogeneous, is discretized in a gradient scheme framework, which can be applied to a wide range of unstruc-tured possibly non-matching polyhedral meshes in arbitrary space dimension. More precisely, we implement the SUSHI scheme which is also locally conservative. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon energy-type estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present the results of a number of numerical tests
Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition
This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0
Numerical results using a colocated finite-volume scheme on unstructured grids for incompressible fluid flows
International audienceThis article presents numerical results using a new finite-volume scheme on unstructured grids for the incompressible Navier-Stokes equations. The discrete unknowns are the components of the velocity, the pressure, and the temperature, colocated at the centers Of the control volumes. The scheme is stabilized using an original method leading to local redistributions of the fluid mass, which simultaneously yields the control of the kinetic energy and the convergence of the scheme. Different comparisons with the literature (2-D and 3-D lid-driven cavity, backward-facing step, differentially heated cavity) allow us to assess the numerical properties of the scheme
- âŠ