4,033 research outputs found
A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods
We investigate the connections between several recent methods for the
discretization of anisotropic heterogeneous diffusion operators on general
grids. We prove that the Mimetic Finite Difference scheme, the Hybrid Finite
Volume scheme and the Mixed Finite Volume scheme are in fact identical up to
some slight generalizations. As a consequence, some of the mathematical results
obtained for each of the method (such as convergence properties or error
estimates) may be extended to the unified common framework. We then focus on
the relationships between this unified method and nonconforming Finite Element
schemes or Mixed Finite Element schemes, obtaining as a by-product an explicit
lifting operator close to the ones used in some theoretical studies of the
Mimetic Finite Difference scheme. We also show that for isotropic operators, on
particular meshes such as triangular meshes with acute angles, the unified
method boils down to the well-known efficient two-point flux Finite Volume
scheme
Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2 or 3D meshes
We study a colocated cell centered finite volume method for the approximation
of the incompressible Navier-Stokes equations posed on a 2D or 3D finite
domain. The discrete unknowns are the components of the velocity and the
pressures, all of them colocated at the center of the cells of a unique mesh;
hence the need for a stabilization technique, which we choose of the
Brezzi-Pitk\"aranta type. The scheme features two essential properties: the
discrete gradient is the transposed of the divergence terms and the discrete
trilinear form associated to nonlinear advective terms vanishes on discrete
divergence free velocity fields. As a consequence, the scheme is proved to be
unconditionally stable and convergent for the Stokes problem, the steady and
the transient Navier-Stokes equations. In this latter case, for a given
sequence of approximate solutions computed on meshes the size of which tends to
zero, we prove, up to a subsequence, the -convergence of the components of
the velocity, and, in the steady case, the weak -convergence of the
pressure. The proof relies on the study of space and time translates of
approximate solutions, which allows the application of Kolmogorov's theorem.
The limit of this subsequence is then shown to be a weak solution of the
Navier-Stokes equations. Numerical examples are performed to obtain numerical
convergence rates in both the linear and the nonlinear case.Comment: submitted September 0
A collocated finite volume scheme to solve free convection for general non-conforming grids
We present a new collocated numerical scheme for the approximation of the
Navier-Stokes and energy equations under the Boussinesq assumption for general
grids, using the velocity-pressure unknowns. This scheme is based on a recent
scheme for the diffusion terms. Stability properties are drawn from particular
choices for the pressure gradient and the non-linear terms. Numerical results
show the accuracy of the scheme on irregular grids
Convergence in of weak solutions to perturbed doubly degenerate parabolic equations
We study the behaviour of solutions to a class of nonlinear degenerate
parabolic problems when the data are perturbed. The class includes the Richards
equation, Stefan problem and the parabolic -Laplace equation. We show that,
up to a subsequence, weak solutions of the perturbed problem converge
uniformly-in-time to weak solutions of the original problem as the perturbed
data approach the original data. We do not assume uniqueness or additional
regularity of the solution. However, when uniqueness is known, our result
demonstrates that the weak solution is uniformly temporally stable to
perturbations of the data. Beginning with a proof of temporally-uniform,
spatially-weak convergence, we strengthen the latter by relating the unknown to
an underlying convex structure that emerges naturally from energy estimates on
the solution. The double degeneracy --- shown to be equivalent to a maximal
monotone operator framework --- is handled with techniques inspired by a
classical monotonicity argument and a simple variant of the compensated
compactness phenomenon.Comment: J. Differential Equations, 201
A unified analysis of elliptic problems with various boundary conditions and their approximation
We design an abstract setting for the approximation in Banach spaces of
operators acting in duality. A typical example are the gradient and divergence
operators in Lebesgue--Sobolev spaces on a bounded domain. We apply this
abstract setting to the numerical approximation of Leray-Lions type problems,
which include in particular linear diffusion. The main interest of the abstract
setting is to provide a unified convergence analysis that simultaneously covers
(i) all usual boundary conditions, (ii) several approximation methods. The
considered approximations can be conforming, or not (that is, the approximation
functions can belong to the energy space of the problem, or not), and include
classical as well as recent numerical schemes. Convergence results and error
estimates are given. We finally briefly show how the abstract setting can also
be applied to other models, including flows in fractured medium, elasticity
equations and diffusion equations on manifolds. A by-product of the analysis is
an apparently novel result on the equivalence between general Poincar{\'e}
inequalities and the surjectivity of the divergence operator in appropriate
spaces
A mixed finite volume scheme for anisotropic diffusion problems on any grid
We present a new finite volume scheme for anisotropic heterogeneous diffusion
problems on unstructured irregular grids, which simultaneously gives an
approximation of the solution and of its gradient. In the case of simplicial
meshes, the approximate solution is shown to converge to the continuous ones as
the size of the mesh tends to 0, and an error estimate is given. In the general
case, we propose a slightly modified scheme for which we again prove the
convergence, and give an error estimate. An easy implementation method is then
proposed, and the efficiency of the scheme is shown on various types of grids
L’accompagnement à l’observance thérapeutique des personnes toxicomanes sous traitement de substitution en situation de précarité
Contexte : Évaluation d’un projet expérimental sur l’accompagnement à l’observance du traitement de substitution des personnes toxicomanes en situation de précarité. Méthode : Analyse linguistique statistique et analyse compréhensive du récit des pratiques de 13 professionnels d’un centre de soins et de dix personnes sous traitement de substitution. Discussion : L’accompagnement à l’observance thérapeutique permettant d’allier qualité de vie et meilleur état de santé est devenu un objectif de santé publique. Si la compliance n’est plus considérée aujourd’hui comme un objectif de l’éducation en santé, elle n’est pas pour autant exclue des pratiques. Les pratiques d’accompagnement déclarées s’inscrivent autant dans un modèle de guidage de l’action et de l’instruction que dans un modèle privilégiant le cheminement avec le sujet dans un processus d’observance/non-observance tentant d’allier les risques en santé et la qualité de vie. Les professionnels déclarent développer des stratégies, des astuces, pour accompagner ces personnes dans un équilibre de santé et de qualité de vie. La multiplicité des obstacles à l’observance et leur imbrication multidirectionnelle invite à considérer la santé dans son approche biopsychosociale d’un sujet et d’un groupe autonome et capable de prendre des décisions de santé lui permettant d’exister dans un environnement en évolution.Context: The evaluation of an experimental counselling project carried out with socially unstable drug-addicts to monitor the compliance with their substitution treatment. Method: Statistical analysis of linguistics and comprehensive analysis of the practice of 13 professionals and the accounts of 10 subjects in a treatment centre. Discussion: It has become a goal in public health to tie together quality of life and improved health through counselling with therapeutic compliance. Compliance is no longer considered a priority in health education; however, it has not been completely discarded. Two models were described in the counselling practice: an action and learning guidance model, and a model which accompanies the subject in the compliance/non-compliance process by looking for the ties between health risks and quality of life. The professionals state that they develop strategies to support these individuals in finding a balanced health and quality of life. The multiplicity of obstacles to compliance and their multidirectional overlap suggest that health should be considered in a bio-psycho-social approach to a person and independent group, capable of making health decisions that allow them to exist in an evolving environment.Contexto: evaluación de un proyecto experimental sobre el acompañamiento de personas toxicómanas en situación precaria en la observancia del tratamiento de sustitución. Método: análisis lingüístico estadístico y análisis comprensivo del relato de las prácticas de trece profesionales de un centro de tratamiento y de diez personas en tratamiento de sustitución. Discusión: el acompañamiento en la observancia terapéutica que permite unir la calidad de vida y el mejoramiento del estado de salud se ha convertido en un objetivo de salud pública. Si el cumplimiento ya no se considera hoy un objetivo de educación sanitaria, el mismo no está sin embargo excluido de las prácticas. Las prácticas de acompañamiento declaradas se inscriben tanto en un modelo de guía de la acción y de la instrucción como en un modelo que privilegia el progreso con el sujeto en un proceso de observancia o no-observancia que trata de vincular los riesgos para la salud y la calidad de vida. Los profesionales de la salud declaran desarrollar estrategias y astucias para acompañar a estas personas en un equilibrio de salud y calidad de vida. La multiplicidad de los obstáculos que se presentan a la observancia y su imbricación multidireccional invitan a considerar, en su enfoque bio-psicosocial, la salud de un sujeto y de un grupo autónomo y capaz de tomar, en materia de salud, las decisiones que le permiten existir en un medio en evolución
Unified convergence analysis of numerical schemes for a miscible displacement problem
This article performs a unified convergence analysis of a variety of
numerical methods for a model of the miscible displacement of one
incompressible fluid by another through a porous medium. The unified analysis
is enabled through the framework of the gradient discretisation method for
diffusion operators on generic grids. We use it to establish a novel
convergence result in of the approximate
concentration using minimal regularity assumptions on the solution to the
continuous problem. The convection term in the concentration equation is
discretised using a centred scheme. We present a variety of numerical tests
from the literature, as well as a novel analytical test case. The performance
of two schemes are compared on these tests; both are poor in the case of
variable viscosity, small diffusion and medium to small time steps. We show
that upstreaming is not a good option to recover stable and accurate solutions,
and we propose a correction to recover stable and accurate schemes for all time
steps and all ranges of diffusion
A cell-centred finite volume approximation for second order partial derivative operators with full matrix on unstructured meshes in any space dimension
Finite volume methods for problems involving second order operators with full
diffusion matrix can be used thanks to the definition of a discrete gradient
for piecewise constant functions on unstructured meshes satisfying an
orthogonality condition. This discrete gradient is shown to satisfy a strong
convergence property on the interpolation of regular functions, and a weak one
on functions bounded for a discrete norm. To highlight the importance of
both properties, the convergence of the finite volume scheme on a homogeneous
Dirichlet problem with full diffusion matrix is proven, and an error estimate
is provided. Numerical tests show the actual accuracy of the method
- …
