This article performs a unified convergence analysis of a variety of
numerical methods for a model of the miscible displacement of one
incompressible fluid by another through a porous medium. The unified analysis
is enabled through the framework of the gradient discretisation method for
diffusion operators on generic grids. We use it to establish a novel
convergence result in L∞(0,T;L2(Ω)) of the approximate
concentration using minimal regularity assumptions on the solution to the
continuous problem. The convection term in the concentration equation is
discretised using a centred scheme. We present a variety of numerical tests
from the literature, as well as a novel analytical test case. The performance
of two schemes are compared on these tests; both are poor in the case of
variable viscosity, small diffusion and medium to small time steps. We show
that upstreaming is not a good option to recover stable and accurate solutions,
and we propose a correction to recover stable and accurate schemes for all time
steps and all ranges of diffusion