66 research outputs found

    Molecular identification and transmission studies of X-cell parasites from Atlantic cod Gadus morhua (Gadiformes: Gadidae) and the northern black flounder Pseudopleuronectes obscurus (Pleuronectiformes: Pleuronectidae)

    Get PDF
    Background: Epidermal pseudotumours from Hippoglossoides dubius and Acanthogobius flavimanus in Japan and gill lesions in Limanda limanda from the UK have been shown to be caused by phylogenetically related protozoan parasites, known collectively as X-cells. However, the phylogenetic position of the X-cell group is not well supported within any of the existing protozoan phyla and they are currently thought to be members of the Alveolata. Ultrastructural features of X-cells in fish pseudotumours are somewhat limited and no typical environmental stages, such as spores or flagellated cells, have been observed. The life cycles for these parasites have not been demonstrated and it remains unknown how transmission to a new host occurs. In the present study, pseudobranchial pseudotumours from Atlantic cod, Gadus morhua, in Iceland and epidermal pseudotumours from the northern black flounder, Pseudopleuronectes obscurus, in Japan were used in experimental transmission studies to establish whether direct transmission of the parasite is achievable. In addition, X-cells from Atlantic cod were sequenced to confirm whether they are phylogenetically related to other X-cells and epidermal pseudotumours from the northern black flounder were analysed to establish whether the same parasite is responsible for infecting different flatfish species in Japan. Results: Phylogenetic analyses of small subunit ribosomal DNA (SSU rDNA) sequence data from Atlantic cod X-cells show that they are a related parasite that occupies a basal position to the clade containing other X-cell parasites. The X-cell parasite causing epidermal pseudotumours in P. obscurus is the same parasite that causes pseudotumours in H. dubius. Direct, fish to fish, transmission of the X-cell parasites used in this study, via oral feeding or injection, was not achieved. Non-amoeboid X-cells are contained within discrete sac-like structures that are loosely attached to epidermal pseudotumours in flatfish; these X-cells are able to tolerate exposure to seawater. A sensitive nested PCR assay was developed for the sub clinical detection of both parasites and to assist in future life cycle studies. PCR revealed that the parasite in P. obscurus was detectable in non-pseudotumourous areas of fish that had pseudotumours present in other areas of the body. Conclusions: The inability to successfully transmit both parasites in this study suggests that either host detachment combined with a period of independent development or an alternate host is required to complete the life cycle for X-cell parasites. Phylogenetic analyses of SSU rDNA confirm a monophyletic grouping for all sequenced X-cell parasites, but do not robustly support their placement within any established protist phylum. Analysis of SSU rDNA from X-cells in Japanese flatfish reveals that the same parasite can infect more than one species of fish

    A recent whole-genome duplication divides populations of a globally-distributed microsporidian

    Get PDF
    This is the final version of the article. Available from Oxford University Press via the DOI in this record.The Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (<3 Mb of gene-dense sequence) whilst others have more typically eukaryotic genome architectures. To gain fine-scale, population-level insight into the evolutionary dynamics of these tiny eukaryotic genomes, we performed the broadest microsporidian population genomic study to date, sequencing geographically isolated strains of Spraguea, a marine microsporidian infecting goosefish worldwide. Our analysis revealed that population structure across the Atlantic Ocean is associated with a conserved difference in ploidy, with American and Canadian isolates sharing an ancestral whole genome duplication that was followed by widespread pseudogenisation and sorting-out of paralogue pairs. Whilst past analyses have suggested de novo gene formation of microsporidian-specific genes, we found evidence for the origin of new genes from noncoding sequence since the divergence of these populations. Some of these genes experience selective constraint, suggesting the evolution of new functions and local host adaptation. Combining our data with published microsporidian genomes, we show that nucleotide composition across the phylum is shaped by a mutational bias favouring A and T nucleotides, which is opposed by an evolutionary force favouring an increase in genomic GC content. This work reveals ongoing dramatic reorganisation of genome structure and the evolution of new gene functions in modern microsporidians despite extensive genomic streamlining in their common ancestor.The authors would like to thank John Brookfield and David Studholme for helpful discussions. This work was supported by a Marie Curie Intra-European postdoctoral fellowship (T.A.W.) and the European Research Council Advanced Investigator Programme and the Wellcome Trust (grant numbers ERC- 2010- AdG-268701 045404 to T.M.E.) It is also supported by a Royal Society University Research Fellowship (B.A.P.W.)

    Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland

    Get PDF
    Background: Ixodes ricinus is a three-host tick, a principal vector of Borrelia burgdorferi (s.l.) and one of the main vectors of tick-borne encephalitis (TBE) virus. Iceland is located in the North Atlantic Ocean with subpolar oceanic climate. During the past 3–4 decades, average temperature has increased, supporting more favourable conditions for ticks. Reports of I. ricinus have increased in recent years. If these ticks were able to establish in a changing climate, Iceland may face new threats posed by tick-borne diseases. Methods: Active field surveillance by tick flagging was conducted at 111 sites around Iceland from August 2015 to September 2016. Longworth mammal traps were used to trap Apodemus sylvaticus in southwestern and southern Iceland. Surveillance on tick importation by migratory birds was conducted in southeastern Iceland, using bird nets and a Heligoland trap. Vulpes lagopus carcasses from all regions of the country were inspected for ticks. In addition, existing and new passive surveillance data from two institutes have been merged and are presented. Continental probability of presence models were produced. Boosted Regression Trees spatial modelling methods and its predictions were assessed against reported presence. Results: By field sampling 26 questing I. ricinus ticks (7 males, 3 females and 16 nymphs) were collected from vegetation from three locations in southern and southeastern Iceland. Four ticks were found on migratory birds at their arrival in May 2016. A total of 52 A. sylvaticus were live-trapped but no ticks were found nor on 315 V. lagopus carcasses. Passive surveillance data collected since 1976, reports further 214 I. ricinus ticks from 202 records, with an increase of submissions in recent years. The continental probability of presence model correctly predicts approximately 75% of the recorded presences, but fails to predict a fairly specific category of recorded presence in areas where the records are probably opportunistic and not likely to lead to establishment. Conclusions: To the best of our knowledge, this study represents the first finding of questing I. ricinus ticks in Iceland. The species could possibly be established locally in Iceland in low abundance, although no questing larvae have yet been detected to confirm established populations. Submitted tick records have increased recently, which may reflect an increase in exposure, or in interest in ticks. Furthermore, the amount of records on dogs, cats and humans indicate that ticks were acquired locally, presenting a local biting risk. Tick findings on migratory birds highlight a possible route of importation. Obtaining questing larvae is now a priority to confirm that I. ricinus populations are established in Iceland. Further surveys on wild mammals (e.g. Rangifer tarandus), livestock and migratory birds are recommended to better understand their role as potential hosts for I. ricinus.Work was carried out under VectorNet, a European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (framework contract OC/EFSA/AHAW/2013/02-FWC1) funded by the European Food Safety Authority (EFSA) and the European Centre for Disease prevention and Control (ECDC). JM is also partly funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene & Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of Exeter, University College London, and the Met Office; and partly funded by the NIHR HPRU on Emerging Infections and Zoonoses at the University of Liverpool in partnership with PHE and Liverpool School of Tropical Medicine.Peer Reviewe
    corecore