38 research outputs found

    High Power Impulse Magnetron Sputtering of CIGS Thin Films for High Efficiency Thin Film Solar Cells

    Get PDF
    In this work CuIn1-xGaxSe2 (CIGS) thin films with three different values of x (0; 0.28; 1) were preparedby nonreactive sputtering of Cu, In and Ga in HiPIMS (High Power Impulse Magnetron Sputtering) orDC magnetron and subsequently selenized in an Ar+Se atmosphere. Optical emission spectroscopy(OES) was used to monitor some basic plasma parameters during sputtering of metallic precursors. CIGSthin film characteristics were measured using X-ray diffraction (XRD), scanning electron microscopy(SEM), Raman spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and other techniques

    Chromo- and Fluorogenic Organometallic Sensors

    Get PDF
    Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O 2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre

    Thin Films Formed by Selenization of CuIn\u3csub\u3ex\u3c/sub\u3eB\u3csub\u3e1−x\u3c/sub\u3e Precursors in Se Vapor

    Get PDF
    Previous attempts in producing light absorbing materials with bandgaps near the 1.37 eV efficiency optimum have included the partial substitution of gallium or aluminum for indium in the CIS system. The most efficient of these solar cells to date have had absorber layers with bandgaps \u3c 1.2 eV. It is logical that an even smaller substitutional atom, boron, should lead to a wider bandgap with a smaller degree of atomic substitution. In this study, copper–indium–boron precursor films are sputtered onto molybdenum coated glass substrates and post-selenized. In the selenized films, although X-ray diffraction (XRD) measurements confirm that a CIS phase is present, Auger electron spectroscopy (AES) results indicate that boron is no longer homogeneously dispersed throughout the film as it was in the case of the unselenized precursor

    A Novel Sol-Gel Route To Pinhole-Free Iron Sulfide Thin Films

    Get PDF
    The general purpose of the study is to fabricate and improve upon FeS2 thin films which can be used as the photon absorber layer for a heterojunction or homojunction solar cell. This work deals with the preparation of the pyrite by an unconventional sol-gel approach. Thin pyrite films were prepared by sulfurizing the iron oxide films previously deposited through the sol-gel method using iron (III) chloride as a precursor. The structural, morphological, electronic and optical properties of the deposited films were determined using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, Auger electron spectroscopy (AES), UV-Vis absorption spectroscopy, Hall effect and profilometry. The effects of annealing and sulfurization temperatures were studied. The work was also devoted to the research of sodium diffusion from the substrate due to the thermal treatment and its affect on the pyrite films functionality

    A non-vacuum process for preparing nanocrystalline CuIn\u3csub\u3e1−x\u3c/sub\u3eGa\u3csub\u3ex\u3c/sub\u3eSe\u3csub\u3e2\u3c/sub\u3e materials involving an open-air solvothermal reaction

    Get PDF
    A non-vacuum, two-step process has been used to prepare a series of nanocrystalline CuIn1−xGaxSe2 (x = 0, 0.25, 0.5, 0.75, 1) materials. An open-air solvothermal preparation in triethylenetetramine solvent was followed by annealing at 500 °C in a nitrogen atmosphere for 20 min. All materials have mixed clustered plate, spherical particle, and nanorod morphologies with the smallest particle diameters ranging between 20 and 40 nm. Raman spectroscopy and X-ray diffraction (XRD) confirm that indium/gallium ratio control is possible over a wide range. The solvothermal reaction step yields a mixture of chalcopyrite and Cu2−xSe. This is converted to pure chalcopyrite product by annealing at 500 °C
    corecore