3,386 research outputs found
Self-similar correlation function in brain resting-state fMRI
Adaptive behavior, cognition and emotion are the result of a bewildering
variety of brain spatiotemporal activity patterns. An important problem in
neuroscience is to understand the mechanism by which the human brain's 100
billion neurons and 100 trillion synapses manage to produce this large
repertoire of cortical configurations in a flexible manner. In addition, it is
recognized that temporal correlations across such configurations cannot be
arbitrary, but they need to meet two conflicting demands: while diverse
cortical areas should remain functionally segregated from each other, they must
still perform as a collective, i.e., they are functionally integrated. Here, we
investigate these large-scale dynamical properties by inspecting the character
of the spatiotemporal correlations of brain resting-state activity. In physical
systems, these correlations in space and time are captured by measuring the
correlation coefficient between a signal recorded at two different points in
space at two different times. We show that this two-point correlation function
extracted from resting-state fMRI data exhibits self-similarity in space and
time. In space, self-similarity is revealed by considering three successive
spatial coarse-graining steps while in time it is revealed by the 1/f frequency
behavior of the power spectrum. The uncovered dynamical self-similarity implies
that the brain is spontaneously at a continuously changing (in space and time)
intermediate state between two extremes, one of excessive cortical integration
and the other of complete segregation. This dynamical property may be seen as
an important marker of brain well-being both in health and disease.Comment: 14 pages 13 figures; published online before print September 2
Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium <i>Pectobacterium carotovorum</i> carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of <i>Pectobacterium carotovorum</i> and <i>Pectobacterium atrosepticum</i> with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that <i>Pectobacterium spp.</i> carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of <i>Pectobacterium carotovorum</i> and <i>atrosepticum</i> that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells
Recommended from our members
Genocide, culture and indigenous peoples
This presentation was given as part of the Expert Seminar on Indigenous Cultures and Languages in collaboration with the UN by Dr Damien Short from the Institute of Commonwealth Studies, University of London. The seminar, hosted at Brunel University, took place on the 8th and 9th March 2012 and was organised by Brunel Law School's Human Rights Research Centre. The initiative, fronted by Dr Alexandra Xanthaki of Brunel Law School, represents a positive example of how academia, the civil society and the international community can come together with vulnerable groups to help the regain their rights
A universal model for mobility and migration patterns
Introduced in its contemporary form by George Kingsley Zipf in 1946, but with
roots that go back to the work of Gaspard Monge in the 18th century, the
gravity law is the prevailing framework to predict population movement, cargo
shipping volume, inter-city phone calls, as well as bilateral trade flows
between nations. Despite its widespread use, it relies on adjustable parameters
that vary from region to region and suffers from known analytic
inconsistencies. Here we introduce a stochastic process capturing local
mobility decisions that helps us analytically derive commuting and mobility
fluxes that require as input only information on the population distribution.
The resulting radiation model predicts mobility patterns in good agreement with
mobility and transport patterns observed in a wide range of phenomena, from
long-term migration patterns to communication volume between different regions.
Given its parameter-free nature, the model can be applied in areas where we
lack previous mobility measurements, significantly improving the predictive
accuracy of most of phenomena affected by mobility and transport processes.Comment: Main text and supplementary informatio
Spatial correlations in attribute communities
Community detection is an important tool for exploring and classifying the
properties of large complex networks and should be of great help for spatial
networks. Indeed, in addition to their location, nodes in spatial networks can
have attributes such as the language for individuals, or any other
socio-economical feature that we would like to identify in communities. We
discuss in this paper a crucial aspect which was not considered in previous
studies which is the possible existence of correlations between space and
attributes. Introducing a simple toy model in which both space and node
attributes are considered, we discuss the effect of space-attribute
correlations on the results of various community detection methods proposed for
spatial networks in this paper and in previous studies. When space is
irrelevant, our model is equivalent to the stochastic block model which has
been shown to display a detectability-non detectability transition. In the
regime where space dominates the link formation process, most methods can fail
to recover the communities, an effect which is particularly marked when
space-attributes correlations are strong. In this latter case, community
detection methods which remove the spatial component of the network can miss a
large part of the community structure and can lead to incorrect results.Comment: 10 pages and 7 figure
Mesoscopic structure and social aspects of human mobility
The individual movements of large numbers of people are important in many
contexts, from urban planning to disease spreading. Datasets that capture human
mobility are now available and many interesting features have been discovered,
including the ultra-slow spatial growth of individual mobility. However, the
detailed substructures and spatiotemporal flows of mobility - the sets and
sequences of visited locations - have not been well studied. We show that
individual mobility is dominated by small groups of frequently visited,
dynamically close locations, forming primary "habitats" capturing typical daily
activity, along with subsidiary habitats representing additional travel. These
habitats do not correspond to typical contexts such as home or work. The
temporal evolution of mobility within habitats, which constitutes most motion,
is universal across habitats and exhibits scaling patterns both distinct from
all previous observations and unpredicted by current models. The delay to enter
subsidiary habitats is a primary factor in the spatiotemporal growth of human
travel. Interestingly, habitats correlate with non-mobility dynamics such as
communication activity, implying that habitats may influence processes such as
information spreading and revealing new connections between human mobility and
social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table
(supporting information
Metabolic Syndrome and Autoimmune Diabetes: Action LADA 3
OBJECTIVE—The purpose of this study was to estimate whether prevalence of metabolic syndrome in adult European diabetic patients is associated with type of diabetes
Lipid and Lipoprotein Profiles in Youth With and Without Type 1 Diabetes: The SEARCH for Diabetes in Youth Case-Control Study
OBJECTIVE—The purpose of this study was to compare the lipid profile and the prevalence of lipid abnormalities in youth with and without type 1 diabetes and explore the role of glycemic control on the hypothesized altered lipid profile in youth with type 1 diabetes
Communities and patterns of scientific collaboration in Business and Management
This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape
- …