28 research outputs found

    Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines

    Get PDF
    Somatostatin analogs (SSA) are well-established antisecretory drugs in functionally active neuroendocrine tumors (NET). Two placebo-controlled trials have recently demonstrated significant improvement of progression-free survival under SSA treatment. Furthermore, somatostatin receptor (SSTR) overexpression in NET has also been utilized for diagnostic imaging and peptide receptor radionuclide therapy (PRRT). However, PRRT in NET is associated mostly with partial and minor remission, while other radionuclide therapies reach complete remissions in up to 75% of cases. This study assessed a potential radio-sensitizing effect of SSA treatment in five established NET cell line models: BON, QGP-1, LCC-18, H727, and UMC-11. Irradiation was found to significantly inhibit proliferation, while no additional effect by octreotide treatment was observed. Intriguingly, no impact of SSA treatment alone was found in any of these NET cell lines when systematically analyzing cell viability, proliferation, and cell cycle distribution. Investigation of the causes for this octreotide resistance led to demonstration of low octreotide binding and scarce SSTR, specifically SSTR2 expression as compared to levels found in human NETs. The resistance toward SSA treatment in viability and proliferation assays could not be overcome by re-expression of SSTR2 in two of the cell lines. These results provide systematic evidence for a lack of authentic, tumor-like SSTR expression, and function in five frequently used NET cell line models and point to the need for more physiologic tumor model systems

    mTOR Inhibitors as Radiosensitizers in Neuroendocrine Neoplasms

    Get PDF
    Peptide receptor radioligand therapy (PRRT) has evolved as an important second-line treatment option in the management of inoperable and metastatic neuroendocrine neoplasms (NEN). Though high radiation doses can be delivered to the tumors, complete remission is still rare. Radiosensitization prior to PRRT is therefore considered to be a promising strategy to improve the treatment effect. In this study, effect and mechanism of mTOR inhibitors were investigated in a comprehensive panel of five NEN cell lines (BON, QGP-1, LCC-18, H727, UMC-11), employing assays for cellular proliferation, clonogenic survival, cell cycle modification and signaling. mTOR inhibition lead to growth arrest with a biphasic concentration-response pattern: a partial response at approximately 1 nM and full response at micromolar concentrations (8-48 ÎŒM). All cell lines demonstrated elevated p70S6K phosphorylation yet also increased phosphorylation of counterregulatory Akt. The pulmonary NEN cell line UMC-11 showed the lowest induction of phospho-Akt and strongest growth arrest by mTOR inhibitors. Radiation sensitivity of the cells (50% reduction versus control) was found to range between 4 and 8 Gy. Further, mTOR inhibition was employed together with irradiation to evaluate radiosensitizing effects of this combination treatment. mTOR inhibition was found to radiosensitize all five NEN cells in an additive manner with a moderate overall effect. The radiation-induced G2/M arrest was diminished under combination treatment, leading to an increased G1 arrest. Further investigation involving a suitable animal model as well as radioligand application such as Lu-177-DOTATATE or Lu-177-DOTATOC will have to demonstrate the full potential of this strategy for radiosensitization in NEN

    The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models

    Get PDF
    Background/Aims The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Methods Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. Results BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non- significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Conclusion Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus

    AGTR1 Is Overexpressed in Neuroendocrine Neoplasms, Regulates Secretion and May Potentially Serve as a Target for Molecular Imaging and Therapy

    Get PDF
    This study identified and confirmed angiotensin II (ATII) as a strong activator of signaling in neuroendocrine neoplasm (NEN) cells. Expression analyses of the ATII receptor type 1 (AGTR1) revealed an upregulation of mRNA levels (RT-qPCR) and radioligand binding (autoradiography) in small-intestinal (n = 71) NEN tissues compared to controls (n = 25). NEN cells with high AGTR1 expression exhibited concentration-dependent calcium mobilization and chromogranin A secretion upon stimulation with ATII, blocked by AGTR1 antagonism and Gαq inhibition. ATII also stimulated serotonin secretion from BON cells. AGTR1 ligand saralasin was coupled to a near-infrared fluorescent (NIRF) dye and tested for its biodistribution in a nude mouse model bearing AGTR1-positive BON and negative QGP-1 xenograft tumors. NIRF imaging showed significantly higher uptake in BON tumors. This proof of concept establishes AGTR1 as a novel target in NEN, paving the way for translational chelator-based probes for diagnostic PET imaging and radioligand therapy

    A Cyanine‐Bridged Somatostatin Hybrid Probe for Multimodal SSTR2 Imaging in Vitro and in Vivo: Synthesis and Evaluation

    Get PDF
    Multimodal imaging probes have attracted the interest of ongoing research, for example, for the surgical removal of tumors. Modular synthesis approaches allow the construction of hybrid probes consisting of a radiotracer, a fluorophore and a targeting unit. We present the synthesis of a new asymmetric bifunctional cyanine dye that can be used as a structural and functional linker for the construction of such hybrid probes. 68Ga‐DOTATATE, a well‐characterized radiopeptide targeting the overexpressed somatostatin receptor subtype 2 (SSTR2) in neuroendocrine tumors, was labeled with our cyanine dye, thus providing additional information along with the data obtained from the radiotracer. We tested the SSTR2‐targeting and imaging properties of the resulting probe 68Ga‐DOTA‐ICC‐TATE in vitro and in a tumor xenograft mouse model. Despite the close proximity between dye and pharmacophore, we observed a high binding affinity towards SSTR2 as well as elevated uptake in SSTR2‐overexpressing tumors in the positron emission tomography (PET) scan and histological examination

    Increasing molar activity by HPLC purification improves 68Ga-DOTA-NAPamide tumor accumulation in a B16/F1 melanoma xenograft model

    Get PDF
    Purpose: Melanocortin receptor 1 (MC1R) is overexpressed in melanoma and may be a molecular target for imaging and peptide receptor radionuclide therapy. 68Gallium (68Ga) labeling of DOTA-conjugated peptides is an established procedure in the clinic for use in positron emission tomography (PET) imaging. Aim of this study was to compare a standard labeling protocol against the 68Ga-DOTA peptide purified from the excess of unlabeled peptide. Procedures: The MC1R ligand DOTA-NAPamide was labeled with 68Ga using a standard clinical protocol. Radioactive peptide was separated from the excess of unlabeled DOTA-NAPamide by HPLC. Immediately after the incubation of peptide and 68Ga (95˚C, 15 min), the reaction was loaded on a C18 column and separated by a water/acetonitrile gradient, allowing fractionation in less than 20 minutes. Radiolabeled products were compared in biodistribution studies and PET imaging using nude mice bearing MC1R-expressing B16/F1 xenograft tumors. Results: In biodistribution studies, non-purified 68Ga-DOTA-NAPamide did not show significant uptake in the tumor at 1 h post injection (0.78% IA/g). By the additional HPLC step, the molar activity was raised around 10,000-fold by completely removing unlabeled peptide. Application of this rapid purification strategy led to a more than 8-fold increase in tumor uptake (7.0% IA/g). The addition of various amounts of unlabeled DOTA-NAPamide to the purified product led to a blocking effect and decreased specific tumor uptake, similar to the result seen with non-purified radiopeptide. PET imaging was performed using the same tracer preparations. Purified 68Ga-DOTA-NAPamide, in comparison, showed superior tumor uptake. Conclusions: We demonstrated that chromatographic separation of radiolabeled from excess unlabeled peptide is technically feasible and beneficial, even for short-lived isotopes such as 68Ga. Unlabeled peptide molecules compete with receptor binding sites in the target tissue. Purification of the radiopeptide therefore improved tumor uptake

    CMKLR1-targeting peptide tracers for PET/MR imaging of breast cancer

    Get PDF
    Background: Molecular targeting remains to be a promising approach in oncology. Overexpression of G protein-coupled receptors (GPCRs) in human cancer is offering a powerful opportunity for tumor-selective imaging and treatment employing nuclear medicine. We utilized novel chemerin-based peptide conjugates for chemokine-like receptor 1 (CMKLR1) targeting in a breast cancer xenograft model. Methods: By conjugation with the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), we obtained a family of five highly specific, high-affinity tracers for hybrid positron emission tomography/magnetic resonance (PET/MR) imaging. A xenograft model with target-positive DU4475 and negative A549 tumors in immunodeficient nude mice enabled CMKLR1-specific imaging in vivo. We acquired small animal PET/MR images, assessed biodistribution by ex vivo measurements and investigated the tracer specificity by blocking experiments. Results: Five CMKLR1-targeting peptide tracers demonstrated high biological activity and affinity in vitro with EC50 and IC50 values below 2 nM. Our target-positive (DU4475) and target-negative (A549) xenograft model could be validated by ex vivo analysis of CMKLR1 expression and binding. After preliminary PET imaging, the three most promising tracers [68Ga]Ga-DOTA-AHX-CG34, [68Ga]Ga-DOTA-KCap-CG34 and [68Ga]Ga-DOTA-ADX-CG34 with best tumor uptake were further analyzed. Hybrid PET/MR imaging along with concomitant biodistribution studies revealed distinct CMKLR1-specific uptake (5.1% IA/g, 3.3% IA/g and 6.2% IA/g 1 h post-injection) of our targeted tracers in DU4475 tumor tissue. In addition, tumor uptake was blocked by excess of unlabeled peptide (6.4-fold, 5.5-fold and 3.4-fold 1 h post-injection), further confirming CMKLR1 specificity. Out of five tracers, we identified these three tracers with moderate, balanced hydrophilicity to be the most potent in receptor-mediated tumor targeting. Conclusion: We demonstrated the applicability of 68Ga-labeled peptide tracers by visualizing CMKLR1-positive breast cancer xenografts in PET/MR imaging, paving the way for developing them into theranostics for tumor treatment

    Wakeshield WSF-02 GPS Experiment

    Get PDF
    Shuttle mission STS-69 was launched on September 7, 1995, 10:09 CDT, carrying the Wake Shield Facility (WSF-02). The WSF-02 spacecraft included a set of payloads provided by the Texas Space Grant Consortium, known as TexasSat. One of the TexasSat payloads was a GPS TurboRogue receiver loaned by the University Corporation for Atmospheric Research. On September 11, the WSF-02 was unberthed from the Endeavour payload bay using the remote manipulator system. The GPS receiver was powered on prior to release and the WSF-02 remained in free-flight for three days before being retrieved on September 14. All WSF-02 GPS data, which includes dual frequency pseudorange and carrier phase, were stored in an on-board recorder for post-flight analysis, but "snap- shots" of data were transmitted for 2-3 minutes at intervals of several hours, when permitted by the telemetry band- widdl The GPS experiment goals were: (1) an evaluation of precision orbit determination in a low altitude environment (400 km) where perturbations due to atmospheric drag and the Earth's gravity field are more pronounced than for higher altitude satellites with high precision orbit requirements, such as TOPEX/POSEIDON; (2) an assessment of relative positioning using the WSF GPS receiver and the Endeavour Collins receiver; and (3) determination of atmospheric temperature profiles using GPS signals passing through the atmosphere. Analysis of snap-shot telemetry data indicate that 24 hours of continuous data were stored on board, which includes high rate (50 Hz) data for atmosphere temperature profiles. Examination of the limited number of real-time navigation solutions show that at least 7 GPS satellites were tracked simultaneously and the on-board clock corrections were at the microsec level, as expected. Furthermore, a dynamical consistency test provided a further validation of the on-board navigation solutions. Complete analysis will be conducted in post-flight using the data recorded on-board

    The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models

    Get PDF
    BACKGROUND/AIMS The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110\textgreeka inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. METHODS Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. RESULTS BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. CONCLUSION Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus
    corecore