76 research outputs found

    Atomically dispersed Pt-N-4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction

    Get PDF
    Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N-4 sites doped on a carbon nanotube (Pt-1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt-1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt-1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N-4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER

    Cerebrospinal Fluid Space Alterations in Melancholic Depression

    Get PDF
    Melancholic depression is a biologically homogeneous clinical entity in which structural brain alterations have been described. Interestingly, reports of structural alterations in melancholia include volume increases in Cerebro-Spinal Fluid (CSF) spaces. However, there are no previous reports of CSF volume alterations using automated whole-brain voxel-wise approaches, as tissue classification algorithms have been traditionally regarded as less reliable for CSF segmentation. Here we aimed to assess CSF volumetric alterations in melancholic depression and their clinical correlates by means of a novel segmentation algorithm (‘new segment’, as implemented in the software Statistical Parametric Mapping-SPM8), incorporating specific features that may improve CSF segmentation. A three-dimensional Magnetic Resonance Image (MRI) was obtained from seventy patients with melancholic depression and forty healthy control subjects. Although imaging data were pre-processed with the ‘new segment’ algorithm, in order to obtain a comparison with previous segmentation approaches, tissue segmentation was also performed with the ‘unified segmentation’ approach. Melancholic patients showed a CSF volume increase in the region of the left Sylvian fissure, and a CSF volume decrease in the subarachnoid spaces surrounding medial and lateral parietal cortices. Furthermore, CSF increases in the left Sylvian fissure were negatively correlated with the reduction percentage of depressive symptoms at discharge. None of these results were replicated with the ‘unified segmentation’ approach. By contrast, between-group differences in the left Sylvian fissure were replicated with a non-automated quantification of the CSF content of this region. Left Sylvian fissure alterations reported here are in agreement with previous findings from non-automated CSF assessments, and also with other reports of gray and white matter insular alterations in depressive samples using automated approaches. The reliable characterization of CSF alterations may help in the comprehensive characterization of brain structural abnormalities in psychiatric samples and in the development of etiopathogenic hypotheses relating to the disorders

    Control of Flowering and Cell Fate by LIF2, an RNA Binding Partner of the Polycomb Complex Component LHP1

    Get PDF
    Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation

    Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation

    Full text link

    The neurobiological link between OCD and ADHD

    Get PDF

    The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

    Full text link

    Temperature-dependent kinetic studies of the chlorine evolution reaction over RuO2(110) model electrodes

    No full text
    \u3cp\u3eUltrathin single-crystalline RuO \u3csub\u3e2\u3c/sub\u3e(110) films supported on Ru(0001) are employed as model electrodes to extract kinetic information about the industrially important chlorine evolution reaction (CER) in a 5M concentrated NaCl solution under well-defined electrochemical conditions and variable temperatures. A combination of chronoamperometry (CA) and online electrochemical mass spectrometry (OLEMS) experiments provides insight into the selectivity issue: At pH = 0.9, the CER dominates over oxygen evolution, whereas at pH = 3.5, oxygen evolution and other parasitic side reactions contribute mostly to the total current density. From temperature-dependent CA data for pH = 0.9, we determine the apparent free activation energy of the CER over RuO \u3csub\u3e2\u3c/sub\u3e(110) to be 0.91 eV, which compares reasonably well with the theoretical value of 0.79 eV derived from first-principles microkinetics. The experimentally determined apparent free activation energy of 0.91 eV is considered as a benchmark for assessing future improved theoretical modeling from first principles. \u3c/p\u3
    corecore