3,097 research outputs found

    Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion

    Get PDF
    The basis for communication between nerve cells lies in the process of exocytosis, the fusion of neurotransmitter filled vesicles with the cell membrane resulting in release of the signaling molecules. Even though much is known about this process, the extent that the vesicles are emptied upon fusion is a topic that is being debated. We have analyzed amperometric peaks corresponding to release at PC12 cells and find stable plateau currents during the decay of peaks, indicating closing of the vesicle after incomplete release of its content. Using lipid incubations to alter the amount of transmitter released we were able to estimate the initial vesicular content, and from that, the fraction of release. We propose a process for most exocytosis events where the vesicle partially opens to release transmitter and then closes directly again, leaving the possibility for regulation of transmission within events

    Qualitative study in Loop Quantum Cosmology

    Get PDF
    This work contains a detailed qualitative analysis, in General Relativity and in Loop Quantum Cosmology, of the dynamics in the associated phase space of a scalar field minimally coupled with gravity, whose potential mimics the dynamics of a perfect fluid with a linear Equation of State (EoS). Dealing with the orbits (solutions) of the system, we will see that there are analytic ones, which lead to the same dynamics as the perfect fluid, and our goal is to check their stability, depending on the value of the EoS parameter, i.e., to show whether the other orbits converge or diverge to these analytic solutions at early and late times.Comment: 12 pages, 7 figures. Version accepted for publication in CQ

    Assessing the Accuracy of Complex Refractive Index Retrievals from Single Aerosol Particle Cavity Ring-Down Spectroscopy

    Get PDF
    <p>Cavity ring-down spectroscopy (CRDS) of single, optically manipulated aerosol particles affords quantitative retrieval of refractive indices for particles of fixed or evolving composition with high precision. Here, we quantify the accuracy with which refractive index determinations can be made by CRDS for single particles confined within the core of a Bessel laser beam and how that accuracy is degraded as the particle size is progressively reduced from the coarse mode (>1 μm radius) to the accumulation mode (<500 nm radius) regime. We apply generalized Lorenz–Mie theory to the intra-cavity standing wave to explore the effect of particle absorption on the distribution of extinction cross section determinations resulting from stochastic particle motion in the Bessel beam trap. The analysis provides an assessment of the accuracy with which the real, <i>n</i>, and imaginary, κ, components of the refractive index can be determined for a single aerosol particle.</p> <p>Published with license by American Association for Aerosol Research</p> <p><a href="https://www.tandfonline.com/pb-assets/tandf/Migrated/UAST_VideoAbstract_Transcript.pdf" target="_blank">Read the transcript</a></p> <p><a href="https://vimeo.com/263371383" target="_blank">Watch the video on Vimeo</a></p

    Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy

    Get PDF
    We report a new single aerosol particle approach using cavity ringdown spectroscopy to accurately determine optical extinction cross sections at multiple wavelengths.</p

    Solvent response to fluorine-atom reaction dynamics in liquid acetonitrile

    Get PDF
    Solvent restructuring and vibrational cooling follow exothermic fluorine-atom reactions in acetonitrile.</p
    corecore