239 research outputs found

    Bromination of Graphene and Graphite

    Get PDF
    We present a density functional theory study of low density bromination of graphene and graphite, finding significantly different behaviour in these two materials. On graphene we find a new Br2 form where the molecule sits perpendicular to the graphene sheet with an extremely strong molecular dipole. The resultant Br+-Br- has an empty pz-orbital located in the graphene electronic pi-cloud. Bromination opens a small (86meV) band gap and strongly dopes the graphene. In contrast, in graphite we find Br2 is most stable parallel to the carbon layers with a slightly weaker associated charge transfer and no molecular dipole. We identify a minimum stable Br2 concentration in graphite, finding low density bromination to be endothermic. Graphene may be a useful substrate for stabilising normally unstable transient molecular states

    Behavior of hydrogen ions, atoms, and molecules in a-boron studied using density functional calculations

    Get PDF
    We examine the behavior of hydrogen ions, atoms, and molecules in a-boron using density functionalcalculations. Hydrogen behaves as a negative-U center, with positive H ions preferring to sit off-center oninterlayer bonds and negative H ions sitting preferably at in-plane sites between three B12 icosahedra. Hydrogen atoms inside B12 icosahedral cages are unstable, drifting off-center and leaving the cage with only a 0.09 eV barrier. While H0 is extremely mobile (diffusion barrier 0.25 eV), H+ and H- have higher diffusion barriers of 0.9 eV. Once mobile, these defects will combine, forming H2 in the interstitial void space, which will remain trapped in the lattice until high temperatures. Based on these results we discuss potential differences for hydrogen behavior in -boron and compare with experimental muon-implantation data

    Electron spectroscopy of carbon materials: Experiment and theory

    Get PDF
    We present a comparative spectroscopic study of carbon as graphite, diamond and C60 using C1s K-edge electron energy-loss spectroscopy (EELS), X-ray emission spectroscopy, and theoretical modelling. The first principles calculations of these spectra are obtained in the local density approximation using a self-consistent Gaussian basis pseudo-potential method. Calculated spectra show excellent agreement with experiment and are able to discriminate not only between various carbon hybridisations but also local variation in environment. Core-hole effects on the calculated spectra are also investigated. For the first time, the EEL spectrum of carbyne is calculated

    Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes

    Get PDF
    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.Comment: 25 pages, 13 figure

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200

    Platinum and palladium on carbon nanotubes:Experimental and theoretical studies

    Get PDF
    <p>Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the CNT surface. Oxygen functional groups grafted by the plasma functionalization act as nucleation sites for metal nanoparticles. Analysis of the C1s core level spectra reveals that there is no covalent bonding between the Pt or Pd atoms and the CNT surface. Unlike other transition metals such as titanium and copper, neither Pd nor Pt show strong oxygen interaction or surface oxygen scavenging behaviour. (C) 2013 Elsevier B.V. All rights reserved.</p>

    BN domains included into carbon nanotubes: role of interface

    Full text link
    We present a density functional theory study on the shape and arrangement of small BN domains embedded into single-walled carbon nanotubes. We show a strong tendency for the BN hexagons formation at the simultaneous inclusion of B and N atoms within the walls of carbon nanotubes. The work emphasizes the importance of a correct description of the BN-C frontier. We suggest that BN-C interface will be formed preferentially with the participation of N-C bonds. Thus, we propose a new way of stabilizing the small BN inclusions through the formation of nitrogen terminated borders. The comparison between the obtained results and the available experimental data on formation of BN plackets within the single walled carbon nanotubes is presented. The mirror situation of inclusion of carbon plackets within single walled BN nanotubes is considered within the proposed formalism. Finally, we show that the inclusion of small BN plackets inside the CNTs strongly affects the electronic character of the initial systems, opening a band gap. The nitrogen excess in the BN plackets introduces donor states in the band gap and it might thus result in a promising way for n-doping single walled carbon nanotubes

    Bundling up carbon nanotubes through Wigner defects

    Full text link
    We show, using ab initio total energy density functional theory, that the so-called Wigner defects, an interstitial carbon atom right besides a vacancy, which are present in irradiated graphite can also exist in bundles of carbon nanotubes. Due to the geometrical structure of a nanotube, however, this defect has a rather low formation energy, lower than the vacancy itself, suggesting that it may be one of the most important defects that are created after electron or ion irradiation. Moreover, they form a strong link between the nanotubes in bundles, increasing their shear modulus by a sizeable amount, clearly indicating its importance for the mechanical properties of nanotube bundles.Comment: 5 pages and 4 figure

    Comparison between classical potentials and ab initio for silicon under large shear

    Full text link
    The homogeneous shear of the {111} planes along the direction of bulk silicon has been investigated using ab initio techniques, to better understand the strain properties of both shuffle and glide set planes. Similar calculations have been done with three empirical potentials, Stillinger-Weber, Tersoff and EDIP, in order to find the one giving the best results under large shear strains. The generalized stacking fault energies have also been calculated with these potentials to complement this study. It turns out that the Stillinger-Weber potential better reproduces the ab initio results, for the smoothness and the amplitude of the energy variation as well as the localization of shear in the shuffle set
    • …
    corecore