472 research outputs found

    Independent Orbiter Assessment (IOA): Assessment of the backup flight system FMEA/CIL

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA Post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware. The IOA product for the BFS analysis consisted of 29 failure mode worksheets that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline and subsequently compared with the applicable Data Processing System (DPS), Electrical Power Distribution and Control (EPD and C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline. The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product

    Self-Disclosure and Liking on Social Networking Sites

    Get PDF

    Navigation input to level C OFT navigation functional subsystem software requirements (rendezvous onorbit-2)

    Get PDF
    Navigation software design requirements are presented for the orbital flight test phase of space shuttle. Computer loads for the entire onorbit-2 operation are documented

    Submerged Aquatic Vegetation Trends of Back Bay, Virginia

    Get PDF
    (First Paragraph): Submerged aquatic vegetation (SAV) is an important part of a healthy Back Bay ecosystem. SAV helps to stabilize sediments that enter the system and to deter shoreline erosion. The submerged macrophytes serve as filters, improving the quality of the water column by removing many pollutants and dissolved nutrients (Clark, et al., 1973; and Stevenson, et al., 1979). These aquatic plants provide important habitats for a variety of wildlife species, which use the grass beds for shelter, feeding and breeding areas. SAV is a major primary producer in the food chain associated within the aquatic and adjoining upland habitats. The added physical characteristics of the plants within the aquatic environment allow for a greater diversity of wildlife species, when compared to habitats not supporting SAV (Stevenson & Confer, 1978)

    Nuclear reactor power as applied to a space-based radar mission

    Get PDF
    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project

    Properties of simulated sunspot umbral dots

    Full text link
    Realistic 3D radiative MHD simulations reveal the magneto-convective processes underlying the formation of the photospheric fine structure of sunspots, including penumbral filaments and umbral dots. Here we provide results from a statistical analysis of simulated umbral dots and compare them with reports from high-resolution observations. A multi-level segmentation and tracking algorithm has been used to isolate the bright structures in synthetic bolometric and continuum brightness images. Areas, brightness, and lifetimes of the resulting set of umbral dots are found to be correlated: larger umbral dots tend to be brighter and live longer. The magnetic field strength and velocity structure of umbral dots on surfaces of constant optical depth in the continuum at 630 nm indicate that the strong field reduction and high velocities in the upper parts of the upflow plumes underlying umbral dots are largely hidden from spectro-polarimetric observations. The properties of the simulated umbral dots are generally consistent with the results of recent high-resolution observations. However, the observed population of small, short-lived umbral dots is not reproduced by the simulations, possibly owing to insufficient spatial resolution.Comment: Accepted for publication in A&

    Enhanced Joule Heating in Umbral Dots

    Full text link
    We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.Comment: 8 pages, 1 figure, accepted in Solar Physic

    Using Field Data to Assess Model Predictions of Surface and Ground Fuel Consumption by Wildfire in Coniferous Forests of California

    Get PDF
    Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different available fuel characterizations. We found strong regional differences in the performance of different fuel characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load, leading to differences in predicted emissions for some pollutants. When considering total ground and surface fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled fuel consumption and GHG emissions from wildfires in coniferous forests

    Phenomenology of the Deuteron Electromagnetic Form Factors

    Full text link
    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in Table
    • …
    corecore