12 research outputs found

    Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    Get PDF
    The forested swamps of the central Congo Basin store approximately 30 billion metric tonnes of carbon in peat1,2. Little is known about the vulnerability of these carbon stocks. Here we investigate this vulnerability using peat cores from a large interfluvial basin in the Republic of the Congo and palaeoenvironmental methods. We find that peat accumulation began at least at 17,500 calibrated years before present (cal. yr BP; taken as AD 1950). Our data show that the peat that accumulated between around 7,500 to around 2,000 cal. yr BP is much more decomposed compared with older and younger peat. Hydrogen isotopes of plant waxes indicate a drying trend, starting at approximately 5,000 cal. yr BP and culminating at approximately 2,000 cal. yr BP, coeval with a decline in dominant swamp forest taxa. The data imply that the drying climate probably resulted in a regional drop in the water table, which triggered peat decomposition, including the loss of peat carbon accumulated prior to the onset of the drier conditions. After approximately 2,000 cal. yr BP, our data show that the drying trend ceased, hydrologic conditions stabilized and peat accumulation resumed. This reversible accumulation–loss–accumulation pattern is consistent with other peat cores across the region, indicating that the carbon stocks of the central Congo peatlands may lie close to a climatically driven drought threshold. Further research should quantify the combination of peatland threshold behaviour and droughts driven by anthropogenic carbon emissions that may trigger this positive carbon cycle feedback in the Earth system

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Dynamics of lianas in DR Congo

    No full text
    This chapter focuses on the lianas from DR Congo where few recent studies have been conducted. It reports on two developments in liana dynamics in the Congo Basin. First, the chapter presents results from the liana dynamics plots of Ituri, in the eastern DR Congo. The Ituri plots, which are the largest of the Central/Eastern African liana communities and their dynamics, were first sampled in the early 1990s with the establishment of four 10-ha plots. Second, the chapter addresses the dynamics of the invading climber species Sericostachys scandens. Data is presented for lianas in the two 10-ha plots located in the mixed Edoro forest. The chapter also presents liana results for the inventory of 2007 and for changes since 1994. Liana densities in the few African forests that have been studied are similar to other continents, but species diversity appears to be higher

    Structure and composition of the liana assemblage of a mixed rainforest in the Congo Basin

    No full text
    Background and aims – The Congo Basin lowland forest represents one of the largest tropical forest blocks in the world, but its liana assemblage has never been characterized. We evaluate liana floristics, diversity, and structure in the Ituri Forest, and determine the effects of forest structure and edaphic variation on liana species composition. Methods – Two permanent 10-ha plots (200 × 500 m), 500 m apart, were established in mixed forest. All liana individuals = 2 cm dbh were identified, measured, mapped, and marked. For 20 × 20 m subplots we distinguished terra firme and swamp, and we estimated canopy openness. Key results – The combined 20-ha area contains 15,008 lianas (dbh = 2 cm) representing 195 species, 83 genera, and 34 families. Per hectare, species number averaged 64, mean basal area was 0.71 m2 and mean Fisher's alpha, Shannon index, and Simpson diversity index values were 17.9, 3.1 and 11.4, respectively. Ten dominant plant families represented 69% of total species richness, 92% of liana abundance and 92% of basal area, while ten dominant species accounted for 63% of abundance and 59% of basal area. A single species, Manniophyton fulvum, dominated the liana community (22% of all individuals). Forty-one species (21%) had one individual only. Twiners, zoochorous, light-demanding, and meso- or microphyllous species dominated. Liana abundance increased with abundance of medium-sized and large trees but was, surprisingly, independent of small-tree abundance. Canopy openness, habitat type, and tree size were the most important factors influencing abundance and distribution of liana individuals. Conclusions – The Ituri liana assemblage stands out by showing an extreme one-species dominance. Species floristic composition is, however, generally similar to that in other tropical African forests

    A standard protocol for liana censuses

    No full text
    A recent increase in published studies of lianas has been paralleled by a proliferation of protocols for censusing lianas. This article seeks to increase uniformity in liana inventories by providing specific recommendations for the determination of which taxa to include, the location of diameter measurement points on individual stems, the setting of minimum stem diameter cutoffs, the treatment of multiple-stemmed and rooted clonal groups, and the measurement of noncylindrical stems. Use of more uniform liana censusing protocols may facilitate comparison of independently collected data sets and further our understanding of global patterns in liana abundance, diversity, biomass, and dynamics

    Simulating carbon accumulation and loss in the central Congo peatlands

    No full text
    Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where ‘present’ is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon
    corecore