26 research outputs found

    Preponderance of Late-spiking Neurons in Rat Lateral Amygdala

    Get PDF
    Whole-cell recordings from rat lateral amygdala (LA) revealed two populations of principal neurons, that have similar pyramid-like morphologies but differing in firing pattern: late-spiking (LS, 66%) and regular-spiking (RS, 34%). The presence of large numbers of LS neurons arguably supports recent suggestions that the LA should be considered to be a functional extension of perirhinal cortex

    Yawning and Stretching Predict Brain Temperature Changes in Rats: Support for the Thermoregulatory Hypothesis

    Get PDF
    Recent research suggests that yawning is an adaptive behavior that functions to promote brain thermoregulation among homeotherms. To explore the relationship between brain temperature and yawning we implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during and after yawning. Temperature recordings indicate that yawns and stretches occurred during increases in brain temperature, with brain temperatures being restored to baseline following the execution of each of these behaviors. The circulatory changes that accompany yawning and stretching may explain some of the thermal similarities surrounding these events. These results suggest that yawning and stretching may serve to maintain brain thermal homeostasis

    Mental Work Requires Physical Energy: Self-Control Is Neither Exception nor Exceptional

    No full text
    The brain’s reliance on glucose as a primary fuel source is well established, but psychological models of cognitive processing that take energy supply into account remain uncommon. One exception is research on self-control depletion, where debate continues over a limited-resource model. This model argues that a transient reduction in self-control after the exertion of prior self-control is caused by the depletion of brain glucose, and that self-control processes are special, perhaps unique, in this regard. This model has been argued to be physiologically implausible in several recent reviews. This paper attempts to correct some inaccuracies that have occurred during debate over the physiological plausibility of this model. We contend that not only is such limitation of cognition by constraints on glucose supply plausible, it is well established in the neuroscience literature across several cognitive domains. Conversely, we argue that there is no evidence that self-control is special in regard to its metabolic cost. Mental processes require physical energy, and the body is limited in its ability to supply the brain with sufficient energy to fuel mental processes. This article reviews current findings in brain metabolism and seeks to resolve the current conflict in the field regarding the physiological plausibility of the self-control glucose-depletion hypothesis

    Medium-Chain Fatty Acids Improve Cognitive Function in Intensively Treated Type 1 Diabetic Patients and Support In Vitro Synaptic Transmission During Acute Hypoglycemia

    Get PDF
    OBJECTIVE: We examined whether ingestion of medium-chain triglycerides could improve cognition during hypoglycemia in subjects with intensively treated type 1 diabetes and assessed potential underlying mechanisms by testing the effect of β-hydroxybutyrate and octanoate on rat hippocampal synaptic transmission during exposure to low glucose. RESEARCH DESIGN AND METHODS: A total of 11 intensively treated type 1 diabetic subjects participated in stepped hyperinsulinemic- (2 mU · kg(−1) · min(−1)) euglycemic- (glucose ∼5.5 mmol/l) hypoglycemic (glucose ∼2.8 mmol/l) clamp studies. During two separate sessions, they randomly received either medium-chain triglycerides or placebo drinks and performed a battery of cognitive tests. In vitro rat hippocampal slice preparations were used to assess the ability of β-hydroxybutyrate and octanoate to support neuronal activity when glucose levels are reduced. RESULTS: Hypoglycemia impaired cognitive performance in tests of verbal memory, digit symbol coding, digit span backwards, and map searching. Ingestion of medium-chain triglycerides reversed these effects. Medium-chain triglycerides also produced higher free fatty acids and β-hydroxybutyrate levels compared with placebo. However, the increase in catecholamines and symptoms during hypoglycemia was not altered. In hippocampal slices β-hydroxybutyrate supported synaptic transmission under low-glucose conditions, whereas octanoate could not. Nevertheless, octanoate improved the rate of recovery of synaptic function upon restoration of control glucose concentrations. CONCLUSIONS: Medium-chain triglyceride ingestion improves cognition without adversely affecting adrenergic or symptomatic responses to hypoglycemia in intensively treated type 1 diabetic subjects. Medium-chain triglycerides offer the therapeutic advantage of preserving brain function under hypoglycemic conditions without causing deleterious hyperglycemia

    Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance

    No full text
    Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes

    Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation

    No full text
    Recurrent episodes of hypoglycemia impair sympathoadrenal counterregulatory responses (CRRs) to a subsequent episode of hypoglycemia. For individuals with type 1 diabetes, this markedly increases (by 25-fold) the risk of severe hypoglycemia and is a major limitation to optimal insulin therapy. The mechanisms through which this maladaptive response occurs remain unknown. The corticotrophin-releasing factor (CRF) family of neuropeptides and their receptors (CRFR1 and CRFR2) play a critical role in regulating the neuroendocrine stress response. Here we show in the Sprague-Dawley rat that direct in vivo application to the ventromedial hypothalamus (VMH), a key glucose-sensing region, of urocortin I (UCN I), an endogenous CRFR2 agonist, suppressed (~55–60%), whereas CRF, a predominantly CRFR1 agonist, amplified (~50–70%) CRR to hypoglycemia. UCN I was shown to directly alter the glucose sensitivity of VMH glucose-sensing neurons in whole-cell current clamp recordings in brain slices. Interestingly, the suppressive effect of UCN I–mediated CRFR2 activation persisted for at least 24 hours after in vivo VMH microinjection. Our data suggest that regulation of the CRR is largely determined by the interaction between CRFR2-mediated suppression and CRFR1-mediated activation in the VMH
    corecore