3,182 research outputs found
Toward a More Comprehensive Operational Definition of Student and Faculty Member Informal Contact
Graduate students identified as high interactors and faculty members teaching graduate level courses participated in a questionnaire and interview study designed to expand on the existing operational definitions of student-faculty informal contact as a research variable. Statistically significant differences were found between student and faculty subjects on items concerning who defined the relationships, accessibility, and advisement. Student and faculty subjects were in agreement on a range of items concerning initiation of contact, degree of impact, context of interaction, and amount of informality. A discussion of the matter of selection, generalizability of the findings, and institutional factors is presented. Finally, recommendations are made concerning the practical implications of this area of study
Exocrine Pancreatic Insufficiency in Diabetes Mellitus: A Complication of Diabetic Neuropathy or a Different Type of Diabetes?
Pancreatic exocrine insufficiency is a frequently observed phenomenon in type 1 and type 2 diabetes mellitus. Alterations of exocrine pancreatic morphology can also be found frequently in diabetic patients. Several hypotheses try to explain these findings, including lack of insulin as a trophic factor for exocrine tissue, changes in secretion and/or action of other islet hormones, and autoimmunity against common endocrine and exocrine antigens. Another explanation might be that diabetes mellitus could also be a consequence of underlying pancreatic diseases (e.g., chronic pancreatitis). Another pathophysiological concept proposes the functional and morphological alterations as a consequence of diabetic neuropathy. This paper discusses the currently available studies on this subject and tries to provide an overview of the current concepts of exocrine pancreatic insufficiency in diabetes mellitus
TALKING TO, FOR AND ABOUT THE TV: AN ANALYSIS OF NFL FANSâ DISCOURSE
Underrepresented in sport discourse literature, the usually private interactions among television viewers provided the context for this research. The present study built directly on previous findings regarding TV viewer interaction, sport discourse, and speakersâ multiple identities by analyzing the linguistic features of interactions among four male family members while watching televised football in their home. Participants used prosodic features to frame utterances while taking on the voice of fan, coach, or commentator and talking to, for, or about the TV. In general, these viewers talked âtoâ the TV as fans and coaches, âforâ the TV as commentators, and âaboutâ the TV in all three roles. The findings are of potential interest to researchers as well as marketing and advertising companies
Two-dimensional array of magnetic particles: The role of an interaction cutoff
Based on theoretical results and simulations, in two-dimensional arrangements
of a dense dipolar particle system, there are two relevant local dipole
arrangements: (1) a ferromagnetic state with dipoles organized in a triangular
lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square
lattice. In order to accelerate simulation algorithms we search for the
possibility of cutting off the interaction potential. Simulations on a dipolar
two-line system lead to the observation that the ferromagnetic state is much
more sensitive to the interaction cutoff than the corresponding
anti-ferromagnetic state. For (measured in particle diameters)
there is no substantial change in the energetical balance of the ferromagnetic
and anti-ferromagnetic state and the ferromagnetic state slightly dominates
over the anti-ferromagnetic state, while the situation is changed rapidly for
lower interaction cutoff values, leading to the disappearance of the
ferromagnetic ground state. We studied the effect of bending ferromagnetic and
anti-ferromagnetic two-line systems and we observed that the cutoff has a major
impact on the energetical balance of the ferromagnetic and anti-ferromagnetic
state for . Based on our results we argue that is a
reasonable choice for dipole-dipole interaction cutoff in two-dimensional
dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page
Computer simulations of two-dimensional melting with dipole-dipole interactions
We perform molecular dynamics and Monte Carlo simulations of two-dimensional
melting with dipole-dipole interactions. Both static and dynamic behaviors are
examined. In the isotropic liquid phase, the bond orientational correlation
length 6 and susceptibility 6 are measured, and the data are fitted to the
theoretical ansatz. An algebraic decay is detected for both spatial and
temporal bond orientational correlation functions in an intermediate
temperature regime, and it provides an explicit evidence for the existence of
the hexatic phase. From the finite-size scaling analysis of the global bond
orientational order parameter, the disclination unbinding temperature Ti is
estimated. In addition, from dynamic Monte Carlo simulations of the positional
order parameter, we extract the critical exponents at the dislocation unbinding
temperature Tm. All the results are in agreement with those from experiments
and support the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory.Comment: 23 pages, 12figure
Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires
It is found that all the zigzag chains except the nonmagnetic (NM) Ni and
antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look
like a corner-sharing triangle ribbon, and have a lower total energy than the
corresponding linear chains. All the 3d transition metals in both linear and
zigzag structures have a stable or metastable ferromagnetic (FM) state. The
electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and
Ni linear chains is close to 90% or above. In the zigzag structure, the AF
state is more stable than the FM state only in the Cr chain. It is found that
the shape anisotropy energy may be comparable to the electronic one and always
prefers the axial magnetization in both the linear and zigzag structures. In
the zigzag chains, there is also a pronounced shape anisotropy in the plane
perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in
the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is
a spin-reorientation transition in the FM Fe and Co linear chains when the
chains are compressed or elongated. Large orbital magnetic moment is found in
the FM Fe, Co and Ni linear chains
Two-Dimensional Wigner Crystal in Anisotropic Semiconductor
We investigate the effect of mass anisotropy on the Wigner crystallization
transition in a two-dimensional (2D) electron gas. The static and dynamical
properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais
lattices in the presence of anisotropic mass, as may be obtainable in Si
MOSFETs with (110) surface. By studying the stability of all possible lattices,
we find significant change in the crystal structure and melting density of the
electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure
Statistical-mechanical theory of the overall magnetic properties of mesocrystals
The mesocrystal showing both electrorheological and magnetorheological
effects is called electro-magnetorheological (EMR) solids. Prediction of the
overall magnetic properties of the EMR solids is a challenging task due to the
coexistence of the uniaxially anisotropic behavior and structural transition as
well as long-range interaction between the suspended particles. To consider the
uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich
equation for calculating the effective permeabilities by adopting an explicit
characteristic spheroid rather than a characteristic sphere used in the
derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an
Ewald-Kornfeld formulation we are able to investigate the effective
permeability by including the structural transition and long-range interaction
explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation
and Onsager equation naturally. To this end, the numerical simulation shows the
validity of monitoring the structure of EMR solids by detecting their effective
permeabilities.Comment: 14 pages, 1 figur
- âŚ