21 research outputs found

    Studies on Gypsophila fastigiata parameters verifying its suitability to reclamation of post-flotation Zn-Pb wastes

    Get PDF
    An excessive amount of heavy metals negatively affects the environment, causing degradation of large areas throughout the world. Therefore, the effective and inexpensive techniques focused on either removal of those substances or their long-term stabilization in situ need to be improved. We currently propose to use a calamine ecotype of Gypsophila fastigiata (Caryophyllaceae) for biological reclamation of wastes accumulated after Zn-Pb ores enrichment. Plants were cultivated in (1) untreated waste material (control), (2) wastes enriched with mineral fertilizers, and (3) wastes enriched with sewage sludge. Photosynthetic pigments content and electrolyte leakage outside plasma membrane were tested periodically in representative samples. In untreated waste material growth gradually deteriorated during the season. The content of chlorophyll a in leaves taken from control plants decreased more than threefold from 0.51 mg/g f.m. at the beginning to 0.14 mg/g f.m. at the end of the growing season, whereas in treatment with sewage sludge the reduced seasonal variations in photosynthetic pigments content was ascertained (0.78 mg/g f.m. for chl a and 0.20 mg/g f.m. for chl b, both in the spring and autumn) what positively influenced the plant growth. The results indicate that tested G. fastigiata genotype might be used in an assisted revegetation project.

    Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species

    Full text link
    [EN] The increasing frequency and intensity of drought periods is a serious threat for agriculture, prompting research to select and develop crop species and cultivars with enhanced water stress tolerance. Drought responses were studied in four ornamental Sedum species under controlled greenhouse conditions, by withholding watering of the plants for four weeks. Determination of growth parameters (stem length, fresh weight) allowed establishing the relative degree of tolerance of the selected species as S. spurium>S. ochroleucum>S. sediforme>S. album. The levels of photosynthetic pigments (chlorophylls a and b and total carotenoids), oxidative stress [using malondialdehyde (MDA) as a marker], non-enzymatic antioxidants (total phenolic compounds and total flavonoids) and putative osmolytes [proline (Pro) and total soluble sugars] were measured in leaves of control and stressed plants, to correlate drought tolerance with the activation of specific response mechanisms. The results obtained indicate that a higher tolerance to water deficit in Sedum is associated with: a) relatively lower stressinduced degradation of chlorophylls and carotenoids, especially of the latter (which did not decrease in waterstressed plants of S. spurium, the most tolerant species, whereas it was reduced to about 40% of the control in S. album, the most sensitive); b) no increase in MDA levels, reflecting the lack of drought-induced oxidative stress; and c) higher Pro contents in the non-stressed controls of the taxa most resistant to drought, which could be the basis of constitutive mechanisms of tolerance. However, Pro contribution to drought tolerance in Sedum must be based on an `osmoprotectant¿ role, as its concentrations, below 16 ¿mol g¿1 DW in all cases, are too low to have any significant osmotic effect. The identification of these biochemical markers of drought tolerance should help to develop rapid and efficient screening procedures to select Sedum taxa with enhanced tolerance when comparing different species within the genus, or different cultivars within a given species.The work was supported in part by the Ministry of Science and Higher Education of The Republic of Poland as DS 3500/ZBiFR-IBRiB-WBiO-UR and the Erasmus + Programme granted for Aleksandra Koimitiska to complete her doctoral studies.Kozminska, A.; Al Hassan, M.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Vicente, O. (2019). Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae. 243:235-242. https://doi.org/10.1016/j.scienta.2018.08.028S23524224

    Comparative analysis of water deficit and salt tolerance mechanisms in Silene

    Full text link
    [EN] Comparative analyses of the responses to abiotic stress in related taxa with different degrees of tolerance can provide useful information to elucidate the mechanisms of stress tolerance in plants. This kind of study has been carried out in four Silene species, which were subjected to salt and water deficit treatments under controlled greenhouse conditions. Growth parameters and leaf levels of photosynthetic pigments, ions, osmolytes, malondialdehyde (MDA, an oxidative stress biomarker), total phenolic compounds and flavonoids, were determined in control and stressed plants. The degree of stress-induced growth inhibition allowed establishing the relative tolerance of the studied species, identifying S. vulgaris as the most tolerant to salinity and S. sclerocarpa to water deficit; these data correlated well with the characteristics of their natural habitats. All four species showed a high resistance to stress-induced leaf dehydration, and a good negative correlation was found between tolerance and the degradation of photosynthetic pigments. Salinity tolerance is mostly based on the inhibition of Na+ transport to the leaves and the maintenance of relatively high leaf K+ levels in the salt-treated plants. Proline is a reliable stress biomarker but does not appear to be involved in tolerance mechanisms in this genus, as it accumulates at higher levels in the more sensitive species.MDA contents did not increase significantly in response to the stress treatments ¿ except in water-stressed S. latifolia, the species most affected by water deficit ¿ suggesting that the plants were not affected by secondary oxidative stress under the experimental conditions used. Accordingly, the measured variations in the levels of total phenolic compounds and flavonoids were not statistically significant or did not correlate with the relative stress resistance of the studied species. Therefore, stress responses based on the activation of antioxidant systems do not seem to be relevant for abiotic stress tolerance in Silene.The work was supported in part by the Ministry of Science and Higher Education of The Republic of Poland as DS 3500/ZBiFR-IBRiB-WBiO-UR and the Erasmus+ Programme grants, for Aleksandra Kozminska to complete her doctoral studies.Kozminska, A.; Al Hassan, M.; Hanus-Fajerska, E.; Naranjo Olivero, MA.; Boscaiu, M.; Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany. 117:193-206. https://doi.org/10.1016/j.sajb.2018.05.022S19320611

    Identification of salt and drought biochemical stress markers in several Silene vulgaris populations

    Full text link
    [EN] This study attempted to determine short-term responses to drought and salt stress in different Silene vulgaris genotypes and to identify potential abiotic stress biochemical indicators in this species. Four populations from contrasting habitats were subjected to drought and three levels of salinity under controlled greenhouse conditions. The determination of several growth parameters after the stress treatments allowed for ranking the tolerance to stress of the four analyzed populations on the basis of their relative degree of stress-induced growth inhibition. This was then correlated with changes in the leaf levels of monovalent ions (Na+, Cl-, and K+), photosynthetic pigments (chlorophylls a and b, carotenoids), osmolytes (total soluble sugars, proline), and non-enzymatic antioxidants (total phenolic compounds and flavonoids). Despite the observed differences, all four populations appeared to be relatively tolerant to both stress conditions, which in general did not cause a significant degradation of photosynthetic pigments and did not generate oxidative stress in the plants. Drought and salinity tolerance in S. vulgaris was mostly dependent on the use of Na+ and K+ for osmotic adjustment under stress, a mechanism that appeared to be constitutive, and not stress-induced, since relatively high concentrations of these cations (without reaching toxic levels) were also present in the leaves of control plants. The inhibition of additional transportation of toxic ions to the leaves, in response to increasing external salinity, seemed to be a relevant mechanism of tolerance, specifically to salt stress, whereas accumulation of soluble sugars under drought conditions may have contributed to tolerance to drought.This research was supported in part by the Ministry of Science and Higher Education of the Republic of Poland as DS 3500/ZBiFR-IBRiB-WBiO-UR and the Erasmus+ Program granted for Aleksandra Kozminska to complete her doctoral studies.Kozminska, A.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Al Hassan, M.; Halecki, W.; Vicente, O. (2019). Identification of salt and drought biochemical stress markers in several Silene vulgaris populations. Sustainability. 11(3):1-23. https://doi.org/10.3390/su11030800123113Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613. doi:10.1071/fp09249Rahman, M. M., Hagare, D., Maheshwari, B., & Dillon, P. (2015). Impacts of Prolonged Drought on Salt Accumulation in the Root Zone Due to Recycled Water Irrigation. Water, Air, & Soil Pollution, 226(4). doi:10.1007/s11270-015-2370-1Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277-286. doi:10.1016/j.rse.2016.02.064Laiskhanov, S., Otarov, A., Savin, I., Tanirbergenov, S., Mamutov, Z., Duisekov, S., & Zhogolev, A. (2016). Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan. Polish Journal of Environmental Studies, 25(6), 2469-2475. doi:10.15244/pjoes/61629López-Jurado, J., Balao, F., & Mateos-Naranjo, E. (2016). Deciphering the ecophysiological traits involved during water stress acclimation and recovery of the threatened wild carnation, Dianthus inoxianus. Plant Physiology and Biochemistry, 109, 397-405. doi:10.1016/j.plaphy.2016.10.023Lopez, J. R., Winter, J. M., Elliott, J., Ruane, A. C., Porter, C., & Hoogenboom, G. (2017). Integrating growth stage deficit irrigation into a process based crop model. Agricultural and Forest Meteorology, 243, 84-92. doi:10.1016/j.agrformet.2017.05.001Yeh, C.-H., Kaplinsky, N. J., Hu, C., & Charng, Y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science, 195, 10-23. doi:10.1016/j.plantsci.2012.06.004Zaher-Ara, T., Boroomand, N., & Sadat-Hosseini, M. (2016). Physiological and morphological response to drought stress in seedlings of ten citrus. Trees, 30(3), 985-993. doi:10.1007/s00468-016-1372-yNxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261-266. doi:10.1016/j.sajb.2016.11.003Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional Regulatory Network of Plant Heat Stress Response. Trends in Plant Science, 22(1), 53-65. doi:10.1016/j.tplants.2016.08.015Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. doi:10.1016/j.biotechadv.2009.11.005Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978Gorim, L. Y., & Vandenberg, A. (2017). Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01129Ariga, H., Katori, T., Yoshihara, R., Hase, Y., Nozawa, S., Narumi, I., … Taji, T. (2013). Arabidopsissos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance. Plant Signaling & Behavior, 8(7), e24779. doi:10.4161/psb.24779Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A.-S., Bordenave, M., Maldiney, R., … Savouré, A. (2015). Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress inArabidopsis thaliana. New Phytologist, 208(4), 1138-1148. doi:10.1111/nph.13550Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582Alarcón, R., Ortiz, L. T., & García, P. (2006). Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. International Journal of Food Science and Technology, 41(10), 1239-1242. doi:10.1111/j.1365-2621.2006.01187.xCeccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299Boari, F., Cefola, M., Di Gioia, F., Pace, B., Serio, F., & Cantore, V. (2013). Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants. International Journal of Food Sciences and Nutrition, 64(7), 870-876. doi:10.3109/09637486.2013.799125Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036Bhatt, J., Kumar, S., Patel, S., & Solanki, R. (2017). Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Annals of Agrarian Science, 15(4), 434-438. doi:10.1016/j.aasci.2017.09.001Sebasky, M. E., Keller, S. R., & Taylor, D. R. (2016). Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecology and Evolution, 6(14), 4800-4811. doi:10.1002/ece3.2250Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419BRATTELER, M., LEXER, C., & WIDMER, A. (2006). Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Journal of Evolutionary Biology, 19(4), 1149-1156. doi:10.1111/j.1420-9101.2006.01090.xSandner, T. M., & Matthies, D. (2017). Fluctuating asymmetry of leaves is a poor indicator of environmental stress and genetic stress by inbreeding in Silene vulgaris. Ecological Indicators, 79, 247-253. doi:10.1016/j.ecolind.2017.04.030Wierzbicka, M., & Panufnik, D. (1998). The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environmental Pollution, 101(3), 415-426. doi:10.1016/s0269-7491(98)00012-8VERKLEIJ, J. A. C., & PRAST, J. E. (1989). Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus (L.) Wib.]. New Phytologist, 111(4), 637-645. doi:10.1111/j.1469-8137.1989.tb02358.xHanus-Fajerska, E., Czura, A., Grabski, K., & Tukaj, Z. (2009). The effect of conditioned medium obtained from Scenedesmus subspicatus on suspension culture of Silene vulgaris (Caryophyllaceae). Acta Physiologiae Plantarum, 31(5), 881-887. doi:10.1007/s11738-009-0301-8Ernst, W. H. ., & Nelissen, H. J. . (2000). Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environmental Pollution, 107(3), 329-338. doi:10.1016/s0269-7491(99)00174-8Baloun, J., Nevrtalova, E., Kovacova, V., Hudzieczek, V., Cegan, R., Vyskot, B., & Hobza, R. (2014). Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes. Journal of Plant Physiology, 171(13), 1188-1196. doi:10.1016/j.jplph.2014.04.014Pradas-del-Real, A. E., García-Gonzalo, P., Alarcón, R., González-Rodríguez, A., Lobo, M. C., & Pérez-Sanz, A. (2013). Effect of genotype, Cr(III) and Cr(VI) on plant growth and micronutrient status in Silene vulgaris (Moench). Spanish Journal of Agricultural Research, 11(3), 685. doi:10.5424/sjar/2013113-3536Pradas del Real, A. E., García-Gonzalo, P., Lobo, M. C., & Pérez-Sanz, A. (2014). Chromium speciation modifies root exudation in two genotypes of Silene vulgaris. Environmental and Experimental Botany, 107, 1-6. doi:10.1016/j.envexpbot.2014.05.002García-Gonzalo, P., del Real, A. E. P., Lobo, M. C., & Pérez-Sanz, A. (2016). Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities. Environmental Science and Pollution Research, 24(33), 25713-25724. doi:10.1007/s11356-016-6667-4Baker, A. J. M., Brooks, R. R., Pease, A. J., & Malaisse, F. (1983). Studies on copper and cobalt tolerance in three closely related taxa within the genusSilene L. (Caryophyllaceae) from Zaïre. Plant and Soil, 73(3), 377-385. doi:10.1007/bf02184314Gonnelli, C., Galardi, F., & Gabbrielli, R. (2001). Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum, 113(4), 507-514. doi:10.1034/j.1399-3054.2001.1130409.xPALIOURIS, G., & HUTCHINSON, T. C. (1991). Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytologist, 117(3), 449-459. doi:10.1111/j.1469-8137.1991.tb00009.xKrämer, U. (2018). Conceptualizing plant systems evolution. Current Opinion in Plant Biology, 42, 66-75. doi:10.1016/j.pbi.2018.02.008Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.xLICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.xGupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596Nardini, A., Lo Gullo, M. A., Trifilò, P., & Salleo, S. (2014). The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. Environmental and Experimental Botany, 103, 68-79. doi:10.1016/j.envexpbot.2013.09.018Yang, L., Fountain, J., Wang, H., Ni, X., Ji, P., Lee, R., … Guo, B. (2015). Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. International Journal of Molecular Sciences, 16(10), 24791-24819. doi:10.3390/ijms161024791Ouyang, B., Yang, T., Li, H., Zhang, L., Zhang, Y., Zhang, J., … Ye, Z. (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany, 58(3), 507-520. doi:10.1093/jxb/erl258Beritognolo, I., Harfouche, A., Brilli, F., Prosperini, G., Gaudet, M., Brosche, M., … Sabatti, M. (2011). Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiology, 31(12), 1335-1355. doi:10.1093/treephys/tpr083Ma, H., Song, L., Shu, Y., Wang, S., Niu, J., Wang, Z., … Ma, H. (2012). Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 75(5), 1529-1546. doi:10.1016/j.jprot.2011.11.026Cui, D., Wu, D., Liu, J., Li, D., Xu, C., Li, S., … Zhao, L. (2015). Proteomic Analysis of Seedling Roots of Two Maize Inbred Lines That Differ Significantly in the Salt Stress Response. PLOS ONE, 10(2), e0116697. doi:10.1371/journal.pone.0116697Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089-4103. doi:10.1093/jxb/erp243Zhao, X., Wang, W., Zhang, F., Deng, J., Li, Z., & Fu, B. (2014). Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage. PLoS ONE, 9(9), e108020. doi:10.1371/journal.pone.0108020Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0Grossi, D., Rustioni, L., Simone Di Lorenzo, G., Failla, O., & Brancadoro, L. (2016). Water deficit effects on grapevine woody tissue pigmentations. Horticultural Science, 43(No. 4), 188-194. doi:10.17221/186/2015-hortsciRajakaruna, N. (2017). Lessons on Evolution from the Study of Edaphic Specialization. The Botanical Review, 84(1), 39-78. doi:10.1007/s12229-017-9193-2Vasseur, F., Bresson, J., Wang, G., Schwab, R., & Weigel, D. (2018). Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods, 14(1). doi:10.1186/s13007-018-0331-6Andrade, E. R., Ribeiro, V. N., Azevedo, C. V. G., Chiorato, A. F., Williams, T. C. R., & Carbonell, S. A. M. (2016). Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris L.). Euphytica, 210(2), 277-289. doi:10.1007/s10681-016-1720-4Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., … Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364-369. doi:10.1016/j.sajb.2016.08.018Sen, A., Ozturk, I., Yaycili, O., & Alikamanoglu, S. (2017). Drought Tolerance in Irradiated Wheat Mutants Studied by Genetic and Biochemical Markers. Journal of Plant Growth Regulation, 36(3), 669-679. doi:10.1007/s00344-017-9668-8Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1). doi:10.1186/1939-8433-5-11Baetz, U., Eisenach, C., Tohge, T., Martinoia, E., & De Angeli, A. (2016). Vacuolar Chloride Fluxes Impact Ion content and Distribution during Early Salinity Stress. Plant Physiology, pp.00183.2016. doi:10.1104/pp.16.00183Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00509Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. doi:10.1016/j.cj.2018.01.003CRAIG PLETT, D., & MØLLER, I. S. (2010). Na+transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626. doi:10.1111/j.1365-3040.2009.02086.xFlowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513Genc, Y., Oldach, K., Taylor, J., & Lyons, G. H. (2015). Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytologist, 210(1), 145-156. doi:10.1111/nph.13757Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. doi:10.1016/j.pbi.2009.05.006Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250-258. doi:10.1016/j.pbi.2009.04.003Moinuddin, & Imas, P. (2014). Potassium Uptake in Relation to Drought Tolerance of Chickpea Under Rain-Fed Conditions. Journal of Plant Nutrition, 37(7), 1120-1138. doi:10.1080/01904167.2014.881863Zhang, X., Wu, H., Chen, L., Liu, L., & Wan, X. (2018). Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. The Crop Journal, 6(6), 611-620. doi:10.1016/j.cj.2018.06.001Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences, 14(4), 7370-7390. doi:10.3390/ijms14047370Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009Koźmińska, A., Al Hassan, M., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., & Vicente, O. (2019). Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae, 243, 235-242. doi:10.1016/j.scienta.2018.08.028Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., & Bukhov, N. G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57(1), 87-95. doi:10.1134/s1021443710010127Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1-20

    Evaluation of Scabiosa ochroleuca L. vitality after introduction on post-flotation wastes1

    No full text
    The aim of this study was to evaluate the Scabiosa ochroleuca suitability for growth on heavy metals contaminated substrate obtained as a result of Zn–Pb ores exploitation and their processing. Three variants of cultivation were tested in vegetative hall conditions: post-flotation wastes (control), wastes enriched with either mineral fertilisation or with sewage sludge. The possibility of future direct use of the studied species on post-flotation settling pond was determined on the basis of biometric measurements and analysis efficiency of photosynthetic apparatus, that is, pigments content and chlorophyll a fluorescence. The results showed that untreated wastes negatively influenced on plants morphological and physiological status. On the contrary, the application of sewage sludge improved growth and development of cream scabious. Thus, not only the selection of proper plant material, tolerant to toxic levels of heavy metals and other hostile conditions, but also the waste treatment are crucial when metalliferous areas are to be reclaimed

    Potencjał roślin energetycznych w przestrzeni ogrodowej

    No full text
    Celem pracy jest dokonanie wyboru gatunków roślin energetycznych, które oprócz funkcji użytkowej będą wykazywały możliwości aranżacyjne w ogrodach przydomowych, położonych na obszarach wiejskich. Praca ma charakter przeglądowy i opiera się o własną dokumentację fotograficzną. W ramach analizy zapoznano się z dostępną ofertą rynkową produktów wykonanych z wikliny (Salix purpurea) – jednego z głównych surowców, wykorzystywanych w aranżacji wnętrz ogrodowych. Spośród wielu dostępnych gatunków i odmian roślin użytkowanych jako rośliny energetyczne wytypowano: słonecznik bulwiasty (Helianthus tuberosus), miskant (Miscanthus sp.) oraz wierzbę (Salix sp.). Rośliny energetyczne są łatwo dostępnym źródłem energii, które nie wymagają nadmiernych nakładów inwestycyjnych. Sadzenie tych roślin stwarza miejsce bytowania zwierząt, zatem wpływa na wzrost bioróżnorodności, jednocześnie podnosząc estetykę otoczenia. Surowce mogą stwarzać rozliczne możliwości kompozycyjne, wykorzystywane jako elementy małej architektury ogrodowej. Uprawa roślin energetycznych wpisuje się w trend ekologiczny oraz poprawia mikroklimat w ogrodzie

    Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte <i>Tripolium pannonicum</i> (Jacq.) Dobrocz.

    No full text
    The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant’s response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant’s potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant’s leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum’s tolerance to cadmium stress

    Effect of mycorrhiza and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir

    Get PDF
    Effects of P level in nutrient solution and the colonization of roots by arbuscular mycorrhizal fungi (AMF) on P uptake by tomato plants, their nutritional status, yield and quality of fruits were studied. Plants were grown on rockwool or coconut coir. Inoculation by a mixture of several AMF species was performed three times during the growing period. The mycorrhizal frequency in roots inoculated with AMF amounted to 35.79 – 50.82%. The highest level of mycorrhiza was found in plants receiving nutrient solution with a lower concentration of P. Among the experimental factors, only P level influenced the fruit yield, being higher from plants receiving a nutrient solution with a higher P level. A higher concentration of P in nutrient solution imposed better nutritional status of plants. Higher contents of ascorbic acid and total soluble sugars were found in fruits collected from inoculated plants, grown on rockwool
    corecore