12 research outputs found

    Positional Cloning of cobblestone, a Mouse Mutant Showing Major Defects in Brain Development, Identifies Ift88 as a Candidate Gene

    Get PDF
    The ENU-induced cobblestone (cbs) mouse mutant exhibits severe defects in fore- and midbrain development. Via genomic mapping, the causative mutation for the cbs-phenotype has previously been located on chromosome 14 in the proximity of the gene Ift88 (Intraflagellar transport, 88 kDa). The Ift88 protein is involved in intraflagellar transport and is required for genesis and maintenance of primary and motile cilia. In order to refine the genetic interval further, we performed fine-mapping analysis of the cbs mutant. The candidate region of the cbs mutation is shown to be situated in a region of 4.14 Mb on chromosome 14, containing the Ift88 gene, and excluding dozens of genes present in the roughly-mapped interval. However, neither sequencing of the core Ift88 promoter region nor of two conserved intronic sequences within Ift88 revealed any mutations, indicating that the responsible mutation lies in a transcriptional regulatory sequence within or near the Ift88 gene. Finally, other potential candidate genes in this genetic interval have been identified using synteny analysis on six other vertebrate genomes. This analysis is thus compatible with the idea that the mutation in cbs is located on the Ift88 gene, but it also allows the possibility of other candidate genes that lie near Ift88 to be involved in the phenotype

    Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models

    Get PDF
    Genetic mutations underlying neurodegenerative disorders impair ribosomal DNA (rDNA) transcription suggesting that nucleolar dysfunction could be a novel pathomechanism in polyglutamine diseases and in certain forms of amyotrophic lateral sclerosis/frontotemporal dementia. Here, we investigated nucleolar activity in pre-symptomatic digenic models of Parkinson's disease (PD) that model the multifactorial aetiology of this disease. To this end, we analysed a novel mouse model mildly overexpressing mutant human alpha-synuclein (hA53T-SNCA) in a PTEN-induced kinase 1 (PINK1/ PARK6) knockout background and mutant mice lacking both DJ-1 (also known as PARK7) and PINK1. We showed that overexpressed hA53T-SNCA localizes to the nucleolus. Moreover, these mutants show a progressive reduction of rDNA transcription linked to a reduced mouse lifespan. By contrast, rDNA transcription is preserved in DJ-1/PINK1 double knockout (DKO) mice. mRNA levels of the nucleolar transcription initiation factor 1A (TIF-IA, also known as RRN3) decrease in the substantia nigra of individuals with PD. Because loss of TIF-IA, as a tool to mimic nucleolar stress, increases oxidative stress and because DJ-1 and PINK1 mutations result in higher vulnerability to oxidative stress, we further explored the synergism between these PD-associated genes and impaired nucleolar function. By the conditional ablation of TIF-IA, we blocked ribosomal RNA (rRNA) synthesis in adult dopaminergic neurons in a DJ-1/PINK1 DKO background. However, the early phenotype of these triple knockout mice was similar to those mice exclusively lacking TIF-IA. These data sustain a model in which loss of DJ-1 and PINK1 does not impair nucleolar activity in a pre-symptomatic stage. This is the first study to analyse nucleolar function in digenic PD models. We can conclude that, at least in these models, the nucleolus is not as severely disrupted as previously shown in DA neurons from PD patients and neurotoxin-based PD mouse models. The results also show that the early increase in rDNA transcription and nucleolar integrity may represent specific homeostatic responses in these digenic pre-symptomatic PD models.Peer reviewe

    Comprehensive miRNome-wide profiling in a neuronal cell model of synucleinopathy implies involvement of cell cycle genes

    Get PDF
    Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson\u27s disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated

    Analytical “Bake-Off” of Whole Genome Sequencing Quality for the Genome Russia Project Using a Small Cohort for Autoimmune Hepatitis

    Get PDF
    A comparative analysis of whole genome sequencing (WGS) and genotype calling was initiated for ten human genome samples sequenced by St. Petersburg State University Peterhof Sequencing Center and by three commercial sequencing centers outside of Russia. The sequence quality, efficiency of DNA variant and genotype calling were compared with each other and with DNA microarrays for each of ten study subjects. We assessed calling of SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty separate QC analyses showed high similarities among the sequence quality and called genotypes. The ten genomes tested by the centers included eight American patients afflicted with autoimmune hepatitis (AIH), plus one case’s unaffected parents, in a prelude to discovering genetic influences in this rare disease of unknown etiology. The detailed internal replication and parallel analyses allowed the observation of two of eight AIH cases carrying a rare allele genotype for a previously described AIH-associated gene (FTCD), plus multiple occurrences of known HLA-DRB1 alleles associated with AIH (HLA-DRB1-03:01:01, 13:01:01 and 7:01:01). We also list putative SNVs in other genes as suggestive in AIH influence

    Analytical “bake-off” of whole genome sequencing quality for the Genome Russia project using a small cohort for autoimmune hepatitis

    Get PDF
    <div><p>A comparative analysis of whole genome sequencing (WGS) and genotype calling was initiated for ten human genome samples sequenced by St. Petersburg State University Peterhof Sequencing Center and by three commercial sequencing centers outside of Russia. The sequence quality, efficiency of DNA variant and genotype calling were compared with each other and with DNA microarrays for each of ten study subjects. We assessed calling of SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty separate QC analyses showed high similarities among the sequence quality and called genotypes. The ten genomes tested by the centers included eight American patients afflicted with autoimmune hepatitis (AIH), plus one case’s unaffected parents, in a prelude to discovering genetic influences in this rare disease of unknown etiology. The detailed internal replication and parallel analyses allowed the observation of two of eight AIH cases carrying a rare allele genotype for a previously described AIH-associated gene (<i>FTCD</i>), plus multiple occurrences of known <i>HLA-DRB1</i> alleles associated with AIH <i>(HLA-DRB1-03</i>:<i>01</i>:<i>01</i>, <i>13</i>:<i>01</i>:<i>01 and 7</i>:<i>01</i>:<i>01</i>). We also list putative SNVs in other genes as suggestive in AIH influence.</p></div

    Genotype comparison.

    No full text
    <p>(A) Concordance of WGS genotypes with microarray genotypes. The concordance was estimated based on the trio data as the ratio of microarray SNPs with identical genotypes in WGS results. (B) Comparison of the three WGS datasets between each other in terms of precision, sensitivity and F-measure for pairwise comparisons. Color legend is given on the top right. (C) Concordance of genotypes in the three WGS datasets for all variants, SNPs and indels. Color legend is given on the top right.</p
    corecore