1,738 research outputs found

    Confusion of Diffuse Objects in the X-ray Sky

    Full text link
    Most of the baryons in the present-day universe are thought to reside in intergalactic space at temperatures of 10^5-10^7 K. X-ray emission from these baryons contributes a modest (~10%) fraction of the ~ 1 keV background whose prominence within the large-scale cosmic web depends on the amount of non-gravitational energy injected into intergalactic space by supernovae and AGNs. Here we show that the virialized regions of groups and clusters cover over a third of the sky, creating a source-confusion problem that may hinder X-ray searches for individual intercluster filaments and contaminate observations of distant groups.Comment: accepted to ApJ Letters, 7 pages, 3 figure

    Velocity bias in a LCDM model

    Get PDF
    We use N-body simulations to study the velocity bias of dark matter halos, the difference in the velocity fields of dark matter and halos, in a flat low- density LCDM model. The high force, 2kpc/h, and mass, 10^9Msun/h, resolution allows dark matter halos to survive in very dense environments of groups and clusters making it possible to use halos as galaxy tracers. We find that the velocity bias pvb measured as a ratio of pairwise velocities of the halos to that of the dark matter evolves with time and depends on scale. At high redshifts (z ~5) halos move generally faster than the dark matter almost on all scales: pvb(r)~1.2, r>0.5Mpc/h. At later moments the bias decreases and gets below unity on scales less than r=5Mpc/h: pvb(r)~(0.6-0.8) at z=0. We find that the evolution of the pairwise velocity bias follows and probably is defined by the spatial antibias of the dark matter halos at small scales. One-point velocity bias b_v, defined as the ratio of the rms velocities of halos and dark matter, provides a more direct measure of the difference in velocities because it is less sensitive to the spatial bias. We analyze b_v in clusters of galaxies and find that halos are ``hotter'' than the dark matter: b_v=(1.2-1.3) for r=(0.2-0.8)r_vir, where r_vir is the virial radius. At larger radii, b_v decreases and approaches unity at r=(1-2)r_vir. We argue that dynamical friction may be responsible for this small positive velocity bias b_v>1 found in the central parts of clusters. We do not find significant difference in the velocity anisotropy of halos and the dark matter. The dark matter the velocity anisotropy can be approximated as beta(x)=0.15 +2x/(x^2+4), where x is measured in units of the virial radius.Comment: 13 pages, Latex, AASTeXv5 and natbi

    BOOMERanG Data Suggest a Purely Baryonic Universe

    Get PDF
    The amplitudes of peaks in the angular power spectrum of anisotropies in the microwave background radiation depend on the mass content of the universe. The second peak should be prominent when cold dark matter is dominant, but is depressed when baryons dominate. Recent microwave background data are consistent with a purely baryonic universe with Omega(matter) = Omega(baryon) ~ 0.03 and Omega(Lambda) ~ 1.Comment: 10 pages AASTeX with 1 color postscript figure. Accepted for publication in ApJ Letters. And yes, the prediction was in the literature before the dat

    Integral closure of rings of integer-valued polynomials on algebras

    Full text link
    Let DD be an integrally closed domain with quotient field KK. Let AA be a torsion-free DD-algebra that is finitely generated as a DD-module. For every aa in AA we consider its minimal polynomial μa(X)D[X]\mu_a(X)\in D[X], i.e. the monic polynomial of least degree such that μa(a)=0\mu_a(a)=0. The ring IntK(A){\rm Int}_K(A) consists of polynomials in K[X]K[X] that send elements of AA back to AA under evaluation. If DD has finite residue rings, we show that the integral closure of IntK(A){\rm Int}_K(A) is the ring of polynomials in K[X]K[X] which map the roots in an algebraic closure of KK of all the μa(X)\mu_a(X), aAa\in A, into elements that are integral over DD. The result is obtained by identifying AA with a DD-subalgebra of the matrix algebra Mn(K)M_n(K) for some nn and then considering polynomials which map a matrix to a matrix integral over DD. We also obtain information about polynomially dense subsets of these rings of polynomials.Comment: Keywords: Integer-valued polynomial, matrix, triangular matrix, integral closure, pullback, polynomially dense set. accepted for publication in the volume "Commutative rings, integer-valued polynomials and polynomial functions", M. Fontana, S. Frisch and S. Glaz (editors), Springer 201

    Optimizing Observational Strategy for Future Fgas Constraints

    Full text link
    The Planck cluster catalog is expected to contain of order a thousand galaxy clusters, both newly discovered and previously known, detected through the Sunyaev-Zeldovich effect over the redshift range 0 < z < 1. Follow-up X-ray observations of a dynamically relaxed sub-sample of newly discovered Planck clusters will improve constraints on the dark energy equation-of-state found through measurement of the cluster gas mass fraction fgas. In view of follow-up campaigns with XMM-Newton and Chandra, we determine the optimal redshift distribution of a cluster sample to most tightly constrain the dark energy equation of state. The distribution is non-trivial even for the standard w0-wa parameterization. We then determine how much the combination of expected data from the Planck satellite and fgas data will be able to constrain the dark energy equation-of-state. Our analysis employs a Markov Chain Monte Carlo method as well as a Fisher Matrix analysis. We find that these upcoming data will be able to improve the figure-of-merit by at least a factor two.Comment: 11 pages, 8 figure

    The X-ray Size-Temperature Relation for Intermediate Redshift Galaxy Clusters

    Get PDF
    We present the first measurements of the X-ray size-temperature (ST) relation in intermediate redshift (z~0.30) galaxy clusters. We interpret the local ST relation (z~0.06) in terms of underlying scaling relations in the cluster dark matter properties, and then we use standard models for the redshift evolution of those dark matter properties to show that the ST relation does not evolve with redshift. We then use ROSAT HRI observations of 11 clusters to examine the intermediate redshift ST relation; for currently favored cosmological parameters, the intermediate redshift ST relation is consistent with that of local clusters. Finally, we use the ST relation and our evolution model to measure angular diameter distances; with these 11 distances we evaluate constraints on Omega_M and Omega_L which are consistent with those derived from studies of Type Ia supernovae. The data rule out a model with Omega_M=1 and Omega_L=0 with 2.5 sigma confidence. When limited to models where Omega_M+Omega_L=1, these data are inconsistent with Omega_M=1 with 3 sigma confidence.Comment: ApJ: submitted April 7, accepted June 28, to appear Dec 1 (vol 544

    The mean density of the Universe from cluster evolution

    Full text link
    The determination of the mean density of the Universe is a long standing problem of modern cosmology. The number density evolution of x-ray clusters at a fixed temperature is a powerful cosmological test, new in nature (Oukbir and Blanchard, 1992), somewhat different from standard analyses based on the dynamical measurement of individual objects. However, the absence of any available sample of x-ray selected clusters with measured temperatures at high redshift has prevented this test from being applied earlier. Recently, temperature measurements of ten EMSS clusters at 0.3z0.40.3 \le z \le 0.4 have allowed the application of this test (Henry, 1997). In this work, we present the first results of a new analysis we have performed of this data set as well as a new estimation of the local temperature distribution function of clusters: a likelihood analysis of the temperature distribution functions gives a preferred value for the mean density of the universe which corresponds to 75% of the critical density. An open model with a density smaller than 30% of the critical density is rejected with a level of significance of 95%.Comment: 4 pages, shortened. To be published in Les Comptes Rendus de l'Academie des Science
    corecore