46 research outputs found

    Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110

    Get PDF
    Small open reading frames (sORFs) and genes for non-coding RNAs are poorly investigated components of most genomes. Our analysis of 1391 ORFs recently annotated in the soybean symbiont Bradyrhizobium japonicum USDA 110 revealed that 78% of them contain less than 80 codons. Twenty-one of these sORFs are conserved in or outside Alphaproteobacteria and most of them are similar to genes found in transposable elements, in line with their broad distribution. Stabilizing selection was demonstrated for sORFs with proteomic evidence and bll1319_ISGA which is conserved at the nucleotide level in 16 alphaproteobacterial species, 79 species from other taxa and 49 other Proteobacteria. Further we used Northern blot hybridization to validate ten small RNAs (BjsR1 to BjsR10) belonging to new RNA families. We found that BjsR1 and BjsR3 have homologs outside the genus Bradyrhizobium, and BjsR5, BjsR6, BjsR7, and BjsR10 have up to four imperfect copies in Bradyrhizobium genomes. BjsR8, BjsR9, and BjsR10 are present exclusively in nodules, while the other sRNAs are also expressed in liquid cultures. We also found that the level of BjsR4 decreases after exposure to tellurite and iron, and this down-regulation contributes to survival under high iron conditions. Analysis of additional small RNAs overlapping with 3’-UTRs revealed two new repetitive elements named Br-REP1 and Br-REP2. These REP elements may play roles in the genomic plasticity and gene regulation and could be useful for strain identification by PCR-fingerprinting. Furthermore, we studied two potential toxin genes in the symbiotic island and confirmed toxicity of the yhaV homolog bll1687 but not of the newly annotated higB homolog blr0229_ISGA in E. coli. Finally, we revealed transcription interference resulting in an antisense RNA complementary to blr1853, a gene induced in symbiosis. The presented results expand our knowledge on sORFs, non-coding RNAs and repetitive elements in B. japonicum and related bacteria

    The archaeal exosome localizes to the membrane

    Get PDF
    AbstractWe studied the cellular localization of the archaeal exosome, an RNA-processing protein complex containing orthologs of the eukaryotic proteins Rrp41, Rrp42, Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. Fractionation of cell-free extracts of Sulfolobus solfataricus in sucrose density gradients revealed that DnaG and the active-site comprising subunit Rrp41 are enriched together with surface layer proteins in a yellow colored ring, implicating that the exosome is membrane-bound. In accordance with this assumption, DnaG and Rrp41 were detected at the periphery of the cell by immunofluorescence microscopy. Our finding suggests that RNA processing in Archaea is spatially organized.Structured summaryMINT-7891213: Rrp41 (uniprotkb:Q9UXC2) and DnaG (uniprotkb:P95980) colocalize (MI:0403) by cosedimentation in solution (MI:0028)MINT-7891235: Rrp41 (uniprotkb:Q9UXC2), DnaG (uniprotkb:P95980) and SlaA (uniprotkb:Q2M1E7) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-7891278: Rrp41 (uniprotkb:Q9UXC2) and DnaG (uniprotkb:P95980) colocalize (MI:0403) by fluorescence microscopy (MI:0416

    A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti

    Get PDF
    Schlüter J-P, Reinkensmeier J, Daschkey S, et al. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics. 2010;11(1): 245.BACKGROUND: Small untranslated RNAs (sRNAs) are widespread regulators of gene expression in bacteria. This study reports on a comprehensive screen for sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti applying deep sequencing of cDNAs and microarray hybridizations. RESULTS: A total of 1,125 sRNA candidates that were classified as trans-encoded sRNAs (173), cis-encoded antisense sRNAs (117), mRNA leader transcripts (379), and sense sRNAs overlapping coding regions (456) were identified in a size range of 50 to 348 nucleotides. Among these were transcripts corresponding to 82 previously reported sRNA candidates. Enrichment for RNAs with primary 5'-ends prior to sequencing of cDNAs suggested transcriptional start sites corresponding to 466 predicted sRNA regions. The consensus sigma70 promoter motif CTTGAC-N17-CTATAT was found upstream of 101 sRNA candidates. Expression patterns derived from microarray hybridizations provided further information on conditions of expression of a number of sRNA candidates. Furthermore, GenBank, EMBL, DDBJ, PDB, and Rfam databases were searched for homologs of the sRNA candidates identified in this study. Searching Rfam family models with over 1,000 sRNA candidates, re-discovered only those sequences from S. meliloti already known and stored in Rfam, whereas BLAST searches suggested a number of homologs in related alpha-proteobacteria. CONCLUSIONS: The screening data suggests that in S. meliloti about 3% of the genes encode trans-encoded sRNAs and about 2% antisense transcripts. Thus, this first comprehensive screen for sRNAs applying deep sequencing in an alpha-proteobacterium shows that sRNAs also occur in high number in this group of bacteria

    Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis – a rich resource to identify new transcripts, proteins and to study gene regulation

    Get PDF
    Background: Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results: A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 % of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions: The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes
    corecore