39 research outputs found

    High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules

    Full text link
    Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011^{11} photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3_3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses

    Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera

    Get PDF
    Citation: Amini, K., Boll, R., Lauer, A., Burt, M., Lee, J. W. L., Christensen, L., . . . Rolles, D. (2017). Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera. Journal of Chemical Physics, 147(1). doi:10.1063/1.4982220Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths. © 2017 Author(s)

    Sensitivity of lossy mode resonance-based optical fiber sensors as a function of the coating material refractive index

    No full text
    The sensitivity of lossy mode resonance (LMR)-based sensors to the change in the surrounding medium refractive index (SMRI), which has optical constants of water, was determined. The calculations were performed for a cylindrical light guide with a diameter of 18 \upmu m and a length of 4 mm, having the parameters of a standard single-mode optical fiber SMF-28 with a partially removed cladding, coated with a thin film of material with a refractive index in the range from 1.7 to 3.4. It was found that if the refractive index of the thin film approximately equals two, the SMRI-sensitivities of the first transverse electric (TE) and transverse magnetic (TM) LMRs coincide, and the maximum sensitivity of all TM resonances occurs. According to the computations, when the absolute value of the coating material chromatic dispersion increases, the first LMRs sensitivities decrease. This effect is more significant for the TE resonance. It was demonstrated that in the case of using a coating with a refractive index less than 1.93 the SMRI-sensitivity of the first TM LMR is higher than that of the first TE LMR for any quantity the material chromatic dispersion

    A Study of the Lossy Mode Resonances during the Synthesis Process of Zinc Telluride Films

    No full text
    Films of zinc telluride (ZnTe) were deposited on the surface of a chemically thinned section of an optical fiber by metalorganic chemical vapor deposition. The boundary values of temperatures and the concentration ratios of the initial tellurium and zinc precursors at which the synthesis of ZnTe coatings is possible are determined. The influence of the position of the thinned part of the optical fiber in the reactor on the growth rate of films on the side surface of the fiber was studied, on the basis of which, the parameters of the deposition zone were determined. By placing a section of an optical fiber with an etched cladding in the center of this zone, sensitive elements for refractometers were created. The principle of their operation is based on the dependence of the spectral position of the lossy mode resonance (LMR) maximum on the refractive index (RI) of the external medium. It has been found that even thin films deposited on a light guide in a continuous process have cracks. It is shown that the interruption of the deposition process makes it possible to avoid the appearance of defects in the zinc telluride layers even with the repeated deposition of the sensor. The sensitivity of the spectral position of the LMR to changes in the RI of aqueous sodium chloride solutions in the range from 1.33 to 1.35 for the first transverse electric and transverse magnetic LMRs was 6656 and 6240 nm per refractive index unit, respectively

    Monitoring the Vital Activity of Microalgae Cells Using a Fiber-Optical Refractometer

    No full text
    Using the technology of metalorganic chemical vapor deposition (MOCVD), fully fiber refractometers based on the lossy mode resonance (LMR) were obtained and investigated. The sensors are made on the basis of a section of optical fiber etched to the core with films of titanium dioxide (TiO2) and tin (TiO2/SnO2) deposited on the side surface. The sensitivity of the obtained sensors to the refractive index of the surrounding liquid medium is compared depending on the composition and thickness of the film coating. The sensitivity of the fiber sensor with a two-layer coating in the wavelength range of 1.33–1.35 microns was 4850 nm/RIU. Before measurements, cells suspended in liquid were concentrated on the surface of the sensor due to the effect of optical tweezer. Particles were attracted from the suspension when launching into the fiber radiation from a diode laser with a power of 10 mW. With the help of fabricated fiber sensors, the change in the refractive index of a suspension containing living cells of the microalgae Chlorella Vulgaris was monitored. The possibility of assessing the influence of external conditions on the life process of algae with real-time control using fabricated fiber sensors is shown

    Emerging upconversion nanoparticles for industry and biomedical application

    No full text
    In recent years, the overwhelming majority of the upconversion nanoparticles (UCNPs) prominent applications have originated from their unique luminescent properties. Due to original properties of inorganic UCNPs they attract the interest in numerous fields. We discussed a number of UCNP assisted techniques, such as biomedical imaging, therapy agents, anti-counterfeit labels and 3D printing, showing highly versatile and translatable UCNP photoluminescent nanotechnology for the applications in industry and biomedicine

    Emerging upconversion nanoparticles for industry and biomedical application

    No full text
    In recent years, the overwhelming majority of the upconversion nanoparticles (UCNPs) prominent applications have originated from their unique luminescent properties. Due to original properties of inorganic UCNPs they attract the interest in numerous fields. We discussed a number of UCNP assisted techniques, such as biomedical imaging, therapy agents, anti-counterfeit labels and 3D printing, showing highly versatile and translatable UCNP photoluminescent nanotechnology for the applications in industry and biomedicine
    corecore