21 research outputs found

    Second order regulator Collier directly controls intercalary-specific segment polarity gene expression

    Get PDF
    AbstractIn Drosophila, trunk metamerization is established by a cascade of segmentation gene activities: the gap genes, the pair rule genes, and the segment polarity genes. In the anterior head, metamerization requires also gap-like genes and segment polarity genes. However, because the pair rule genes are not active in this part of the embryo, the question on which gene activities are fulfilling the role of the second order regulator genes still remains to be solved. Here we provide first molecular evidence that the Helix–Loop–Helix–COE transcription factor Collier fulfills this role by directly activating the expression of the segment polarity gene hedgehog in the posterior part of the intercalary segment. Collier thereby occupies a newly identified binding site within an intercalary-specific cis-regulatory element. Moreover, we identified a direct physical association between Collier and the basic-leucine-zipper transcription factor Cap‘n'collar B, which seems to restrict the activating input of Collier to the posterior part of the intercalary segment and to lead to the attenuation of hedgehog expression in the intercalary lobes at later stages

    Unique establishment of procephalic head segments is supported by the identification of cis-regulatory elements driving segment-specific segment polarity gene expression in Drosophila

    Get PDF
    Anterior head segmentation is governed by different regulatory mechanisms than those that control trunk segmentation in Drosophila. For segment polarity genes, both initial mode of activation as well as cross-regulatory interactions among them differ from the typical genetic circuitry in the trunk and are unique for each of the procephalic segments. In order to better understand the segment-specific gene network responsible for the procephalic expression of the earliest active segment polarity genes wingless and hedgehog, we started to identify and analyze cis-regulatory DNA elements of these genes. For hedgehog, we could identify a cis-regulatory element, ic-CRE, that mediates expression specifically in the posterior part of the intercalary segment and requires promoter-specific interaction for its function. The intercalary stripe is the last part of the metameric hedgehog expression pattern that appears during embryonic development, which probably reflects the late and distinct establishment of this segment. The identification of a cis-regulatory element that is specific for one head segment supports the mutant-based observation that the expression of segment polarity genes is governed by a unique gene network in each of the procephalic segments. This provides further indication that the anterior-most head segments represent primary segments, which are set up independently, in contrast to the secondary segments of the trunk, which resemble true repetitive units

    Predictive modeling of long non-coding RNA chromatin (dis-)association

    No full text
    Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis and trans. Although enriched in the chromatin cell fraction, to what degree this defines their broad range of functions remains unclear. In addition, the factors that contribute to lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its functional impact on enhancer activity and target gene expression, remain to be resolved. Here, we combine pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their co-transcriptional state to their release into the nucleoplasm. By incorporating functional and physical characteristics in machine learning models, we find that parameters like co-transcriptional splicing contributes to efficient lncRNA chromatin dissociation. Intriguingly, lncRNAs transcribed from enhancer-like regions display reduced chromatin retention, suggesting that, in addition to splicing, lncRNA chromatin dissociation may contribute to enhancer activity and target gene expression

    Determination of primary microRNA processing in clinical samples by targeted pri-miR-sequencing

    Get PDF
    MicroRNA expression is important for gene regulation and deregulated microRNA expression is often observed in diseases such as cancer. The processing of primary microRNA transcripts is an important regulatory step in microRNA biogenesis. Due to low expression level and association with chromatin, primary microRNAs are challenging to study in clinical samples where input material is limited. Here, we present a high-sensitivity targeted method to determine processing efficiency of several hundred primary microRNAs from total RNA that requires relatively few RNA sequencing reads. We validate the method using RNA from HeLa cells and show the applicability to clinical samples by analyzing RNA from normal liver and hepatocellular carcinoma. We identify 24 primary microRNAs with significant changes in processing efficiency from normal liver to hepatocellular carcinoma, among those the highly expressed miRNA-122 and miRNA-21, demonstrating that differential processing of primary microRNAs is occurring and could be involved in disease. With our method presented here we provide means to study pri-miRNA processing in disease from clinical samples

    The human cap-binding complex is functionally connected to the nuclear RNA exosome

    No full text
    Nuclear processing and quality control of eukaryotic RNA is mediated by the RNA exosome, which is regulated by accessory factors. However, the mechanism of exosome recruitment to its ribonucleoprotein (RNP) targets remains poorly understood. Here we report a physical link between the human exosome and the cap-binding complex (CBC). The CBC associates with the ARS2 protein to form CBC-ARS2 (CBCA) and then further connects, together with the ZC3H18 protein, to the nuclear exosome targeting (NEXT) complex, thus forming CBC-NEXT (CBCN). RNA immunoprecipitation using CBCN factors as well as the analysis of combinatorial depletion of CBCN and exosome components underscore the functional relevance of CBC-exosome bridging at the level of target RNA. Specifically, CBCA suppresses read-through products of several RNA families by promoting their transcriptional termination. We suggest that the RNP 5' cap links transcription termination to exosomal RNA degradation through CBCN
    corecore