127 research outputs found

    3D modelling of branching in plants

    Get PDF
    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants. Branching is regulated by multiple internal factors which are modulated by different environmental signals. A key environmental signal in the context of a plant population is a low red / far-red intensity ratio (R:FR) of the light reflected by neighbouring plants. For instance, low R:FR results in suppression of branching in favour of elongation growth, which is a key aspect of shade avoidance. Shade avoidance enables plants to anticipate future competition by preventing being shaded, rather than to react to prevailing shade conditions. Internally, branching is regulated by a finely tuned plant hormone network. The interactions within this network are modified by environmental cues such as R:FR which is perceived by specific photoreceptors. Combined, internal and external signals enable regulation of branch formation under the influence of environmental conditions. The different aspects of branching control act at different levels of biological organization (organ, whole plant, plant community). These aspects can be integrated in one modelling approach, called functional-structural plant modelling (FSPM), explicitly considering spatial 3D plant development. An FSP model typically contains detailed information at any moment in development of the plant on the number, size, location and orientation of all organs that make up the plant. In FSP models, physiological and physical processes occur within the plant (e.g. photosynthesis and transport of assimilates), and interaction with the environment occurs at the interface of organ and environment (e.g. light absorption by a leaf). Explicit simulation of absorption and scattering of light at the level of the plant organ is an important aspect of FSPM. In combination with dedicated experiments, this modelling tool can be used to analyse the response of plants to (imminent) competition, simulate the competitive advantage of shade avoidance for plants of different architecture, and predict plant form in various light environments. To assess the effect of plant population density through R:FR signalling on tillering (branching) in spring wheat (Triticum aestivum L.), an FSPM study was conducted (Figure 1). A simple descriptive relationship was used to link R:FR as perceived by the plant to extension growth of tiller buds and probability of a bud to form a tiller. A further study included a complete sub-model of branching regulation, aiming at simulating branching as an emergent property in Arabidopsis (Arabidopsis thaliana) under the influence of R:FR. These and other studies show that FSPM is a promising tool to simulate aspects of plant development, such as branching, under the influence of environmental factors. In close combination with dedicated experiments, FSPM can shape our ideas of the mechanisms controlling plant development, can integrate existing knowledge on plant development, and can predict plant development in untested conditions

    Modeling branching in cereals

    Get PDF
    Cereals and grasses adapt their structural development to environmental conditions and the resources available. The primary adaptive response is a variable degree of branching, called tillering in cereals. Especially for heterogeneous plant configurations the degree of tillering varies per plant. Functional–structural plant modeling (FSPM) is a modeling approach allowing simulation of the architectural development of individual plants, culminating in the emergent behavior at the canopy level. This paper introduces the principles of modeling tillering in FSPM, using (I) a probability approach, forcing the dynamics of tillering to correspond to measured probabilities. Such models are particularly suitable to evaluate the effect structural variables on system performance. (II) Dose–response curves, representing a measured or assumed response of tillering to an environmental cue. (III) Mechanistic approaches to tillering including control by carbohydrates, hormones, and nutrients. Tiller senescence is equally important for the structural development of cereals as tiller appearance. Little study has been made of tiller senescence, though similar concepts seem to apply as for tiller appearance

    Plant structure in crop production: considerations on application of FSPM

    Get PDF
    Cereals, potato and glasshouse cut rose, representing monocot annuals, vegetative propagated dicot annual and woody perennials, have different structural development. ‘Bud break’, initiating tillering (monocots) and branching (dicots) is a key process determining plant structure. Plant population density is affecting bud break in each of these three species. The mechanisms explaining these observations and the application in models will be discussed, primarily carbon source : sink ratio and light quality (i.e. red : far red ratio

    Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin

    Get PDF
    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73–0.76) compared to the free-tillering sisters (0.62–0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18–0.22 in tin lines and 0.09–0.11 in free-tillering lines at levels of photosynthetic active radiation of 49–53% and 30–33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement

    Light signal perception in Arabidopsis rosettes

    Get PDF
    Light signals are important signals for future and present competition. We used an architectural model of Arabidopsis development to show that vertical growth of neighboring vegetation is more important than proximity for early detection of competition. Self-signaling is greatly enhanced when own organs grow more vertically, and signal strength differs between signal perception at the apex compared to the leaves

    Non-imaging optics for LED-lighting

    Get PDF
    In this report, several methods are investigated to rapidly compute the light intensity function, either in the far field or on a finite-distance screen, of light emanating from a light fixture with a given shape. Different shapes are considered, namely polygonal and (piecewise) smooth. In the first case, analytic methods are sought to circumvent the use of Monte Carlo methods and ray-tracing with large sample size. In the second case, refinements of the Monte Carlo method (notably using a bootstrap procedure) are devised to minimize the number of samples needed for a good approximation of the intensity function

    Using functional-structural plant modeling to explore the response of cotton to mepiquat chloride application and plant population density

    Get PDF
    The crop growth regulator Mepiquat Chloride (MC) is widely used in cotton production to optimize the canopy structure in order to maximize the yield and fiber quality. Cotton plasticity in relation to MC and other agronomical practice was quantified using a functional-structural plant model of cotton development, ultimately aiming at helping cotton farmers to manage their crops optimally

    Simulating maize plasticity in leaf appearance and size using regulation rules

    Get PDF
    Plants regulate their architecture in response to the growth environment, which challenges us to design models capable of performing well in different conditions. By using self-regulating rules, we reproduced blade and collar emergence time, and organ size distribution along phytomer rank in maize under varying growing conditions. The role of emergence events, e.g. blade tip emergence, collar emergence, in controlling growth phase and elongation duration of different components of one phytomer (blade, sheath and internode) are confirmed

    Cotton fiber quality determined by fruit position, temperature and management

    Get PDF
    CottonXL is a tool to explore cotton fiber quality in relation to fruit position, to improve cotton quality by optimizing cotton plant structure, as well as to help farmers understand how the structure of the cotton plant determines crop growth and quality
    • …
    corecore