103 research outputs found

    Nematic Fluctuations in Iron-Oxychalcogenide Mott Insulators

    Get PDF
    Nematic fluctuations occur in a wide range of physical systems from liquid crystals to biological molecules to solids such as exotic magnets, cuprates and iron-based high-TcT_c superconductors. Nematic fluctuations are thought to be closely linked to the formation of Cooper-pairs in iron-based superconductors. It is unclear whether the anisotropy inherent in this nematicity arises from electronic spin or orbital degrees of freedom. We have studied the iron-based Mott insulators La2_{2}O2_{2}Fe2_{2}OMM2_{2} MM = (S, Se) which are structurally similar to the iron pnictide superconductors. They are also in close electronic phase diagram proximity to the iron pnictides. Nuclear magnetic resonance (NMR) revealed a critical slowing down of nematic fluctuations as observed by the spin-lattice relaxation rate (1/T11/T_1). This is complemented by the observation of a change of electrical field gradient over a similar temperature range using M\"ossbauer spectroscopy. The neutron pair distribution function technique applied to the nuclear structure reveals the presence of local nematic C2C_2 fluctuations over a wide temperature range while neutron diffraction indicates that global C4C_{4} symmetry is preserved. Theoretical modeling of a geometrically frustrated spin-11 Heisenberg model with biquadratic and single-ion anisotropic terms provides the interpretation of magnetic fluctuations in terms of hidden quadrupolar spin fluctuations. Nematicity is closely linked to geometrically frustrated magnetism, which emerges from orbital selectivity. The results highlight orbital order and spin fluctuations in the emergence of nematicity in Fe-based oxychalcogenides. The detection of nematic fluctuation within these Mott insulator expands the group of iron-based materials that show short-range symmetry-breaking

    C-C Chemokine Receptor 5 on Pulmonary Mesenchymal Cells Promotes Experimental Metastasis via the Induction of Erythroid Differentiation Regulator 1

    Get PDF
    C-C Chemokine receptor five knockout (Ccr5-/-) mice develop fewer experimental pulmonary metastases than wild type (WT) mice. This phenomenon was explored by applying gene-expression profiling to the lungs of mice with these metastases. Consequently, Erythroid Differentiation Regulator 1 (Erdr1) was identified as upregulated in the WT mice. Though commonly associated with bone marrow stroma, Erdr1 was differentially expressed in WT pulmonary mesenchymal cells (PMCs) and murine embryonic fibroblasts (MEFs). Moreover, the Ccr5 ligand Ccl4 increased its expression by 3.36 ± 0.14 fold. Ccr5 signaling was dependent on the Map2k but not the Pi3k pathway since treatment with U0126 inhibited upregulation of Erdr1 but treatment with LY294002 increased the expression by 3.44 ± 0.92 fold (p < 0.05). Erdr1's effect on B16-F10 melanoma metastasis was verified by the adoptive transfer of WT MEFs into Ccr5-/- mice. In this model, MEFs that had been transduced with Erdr1 shRNA lowered metastasis by 33% compared to control transduced MEFs. The relevance of ERDR1 on human disease was assessed by co-culturing chronic lymphocytic leukemia (CLL) cells with M2-10B4 stromal cells that had been transfected with shRNA or control plasmids. After 96 hours of co-culture, the cell counts were higher with control cell lines compared with Erdr1 knockdown lines (OR 1.88 ± 0.27, 2.52 ± 0.66 respectively). This increase was associated with a decrease in apoptotic cells (OR 0.69 ± 0.18, 0.58 ± 0.12 respectively)

    Lenticel hydration alters the susceptibility of apple fruit to infection by Phlyctema vagabunda

    Get PDF
    Bull’s eye rot, caused by Phlyctema vagabunda, is an important postharvest rot of apples. A combination of laboratory and field trials were conducted to examine the relationship between infection and status of apple lenticels. Fruit were hydrated and then inoculated, and climatic factors were compared with inoculations and natural infections in the field. In laboratory trials it was shown that increased lenticel density and size led to more infections. Hydration distended lenticel diameter, and dehydration contracted lenticels. A strong relationship with wind run, leaf wetness and temperature were shown to be important for laboratory inoculations of monthly harvested fruit, natural infections in trap fruit experiments, and monthly field inoculations. It was hypothesised that high wind run (&gt; c. 240 km/day) reduced fruit susceptibility by promoting lenticel closure, and when lenticels were open, temperature limited the formation of an infection stroma. If the stroma did not form, postharvest expression of disease was negligible. Leaf wetness over 28 days was also an important factor for infection, probably because of the effect on micro-crack formation and resealing of lenticels during maturation by components of the cuticle. From these results, pre-harvest application of compounds that close lenticels could provide some control of bull’s eye rot without the need for fungicides

    Computational ethics

    Get PDF
    Technological advances are enabling roles for machines that present novel ethical challenges. The study of 'AI ethics' has emerged to confront these challenges, and connects perspectives from philosophy, computer science, law, and economics. Less represented in these interdisciplinary efforts is the perspective of cognitive science. We propose a framework – computational ethics – that specifies how the ethical challenges of AI can be partially addressed by incorporating the study of human moral decision-making. The driver of this framework is a computational version of reflective equilibrium (RE), an approach that seeks coherence between considered judgments and governing principles. The framework has two goals: (i) to inform the engineering of ethical AI systems, and (ii) to characterize human moral judgment and decision-making in computational terms. Working jointly towards these two goals will create the opportunity to integrate diverse research questions, bring together multiple academic communities, uncover new interdisciplinary research topics, and shed light on centuries-old philosophical questions.publishedVersio

    Understanding the re-entrant phase transition in a non-magnetic scheelite

    Get PDF
    The stereochemical activity of lone pair electrons plays a central role in determining the structural and electronic properties of both chemically simple materials such as H2O, as well as more complex condensed phases such as photocatalysts or thermoelectrics. TlReO4 is a rare example of a non-magnetic material exhibiting a re-entrant phase transition and emphanitic behavior in the long-range structure. Here, we describe the role of the Tl+ 6s2 lone pair electrons in these unusual phase transitions and illustrate its tunability by chemical doping, which has broad implications for functional materials containing lone pair bearing cations. First-principles density functional calculations clearly show the contribution of the Tl+ 6s2 in the valence band region. Local structure analysis, via neutron total scattering, revealed that changes in the long-range structure of TlReO4 occur due to changes in the correlation length of the Tl+ lone pairs. This has a significant effect on the anion interactions, with long-range ordered lone pairs creating a more densely packed structure. This resulted in a trade-off between anionic repulsions and lone pair correlations that lead to symmetry lowering upon heating in the long-range structure, whereby lattice expansion was necessary for the Tl+ lone pairs to become highly correlated. Similarly, introducing lattice expansion through chemical pressure allowed long-range lone pair correlations to occur over a wider temperature range, demonstrating a method for tuning the energy landscape of lone pair containing functional materials

    Orbital Refinement and Stellar Properties for the HD 9446, HD 43691, and HD 179079 Planetary Systems

    Get PDF
    The Transit Ephemeris Refinement and Monitoring Survey is a project that aims to detect transits of intermediate-long period planets by refining orbital parameters of the known radial velocity planets using additional data from ground-based telescopes, calculating a revised transit ephemeris for the planet, then monitoring the planet host star during the predicted transit window. Here we present the results from three systems that had high probabilities of transiting planets: HD 9446 b and c, HD 43691 b, and HD 179079 b. We provide new radial velocity (RV) measurements that are then used to improve the orbital solution for the known planets. We search the RV data for indications of additional planets in orbit and find that HD 9446 shows a strong linear trend of 4.8σ. Using the newly refined planet orbital solutions, which include a new best-fit solution for the orbital period of HD 9446 c, and an improved transit ephemerides, we found no evidence of transiting planets in the photometry for each system. Transits of HD 9446 b can be ruled out completely and transits HD 9446 c and HD 43691 b can be ruled out for impact parameters up to b = 0.5778 and b = 0.898, respectively, due to gaps in the photometry. A transit of HD 179079 b cannot be ruled out, however, due to the relatively small size of this planet compared to the large star and thus low signal to noise. We determine properties of the three host stars through spectroscopic analysis and find through photometric analysis that HD 9446 exhibits periodic variability

    TOI-5126: A hot super-Neptune and warm Neptune pair discovered by TESS\textit{TESS} and CHEOPS\textit{CHEOPS}

    Full text link
    We present the confirmation of a hot super-Neptune with an exterior Neptune companion orbiting a bright (V = 10.1 mag) F-dwarf identified by the Transiting Exoplanet Survey Satellite\textit{Transiting Exoplanet Survey Satellite} (TESS\textit{TESS}). The two planets, observed in sectors 45, 46 and 48 of the TESS\textit{TESS} extended mission, are 4.740.14+0.164.74^{+0.16}_{-0.14} RR_{\oplus} and 3.860.16+0.173.86^{+0.17}_{-0.16} RR_{\oplus} with 5.45883850.0000072+0.00000705.4588385^{+0.0000070}_{-0.0000072} d and 17.89990.0013+0.001817.8999^{+0.0018}_{-0.0013} d orbital periods, respectively. We also obtained precise space based photometric follow-up of the system with ESAs CHaracterising ExOplanets Satellite\textit{CHaracterising ExOplanets Satellite} (CHEOPS\textit{CHEOPS}) to constrain the radius and ephemeris of TOI-5126 b. TOI 5126 b is located in the "hot Neptune Desert" and is an ideal candidate for follow-up transmission spectroscopy due to its high predicted equilibrium temperature (Teq=144240+46T_{eq} = 1442^{+46}_{-40} K) implying a cloud-free atmosphere. TOI-5126 c is a warm Neptune (Teq=97127+31T_{eq}= 971^{+31}_{-27} K) also suitable for follow-up. Tentative transit timing variations (TTVs) have also been identified in analysis, suggesting the presence of at least one additional planet, however this signal may be caused by spot-crossing events, necessitating further precise photometric follow-up to confirm these signals.Comment: Accepted in MNRAS, 18 pages, 14 figure
    corecore