64 research outputs found

    Observing---and Imaging---Active Galactic Nuclei with the Event Horizon Telescope

    Get PDF
    Originally developed to image the shadow region of the central black hole in Sagittarius A* and in the nearby galaxy M87, the Event Horizon Telescope (EHT) provides deep, very high angular resolution data on other AGN sources too. The challenges of working with EHT data have spurred the development of new image reconstruction algorithms. This work briefly reviews the status of the EHT and its utility for observing AGN sources, with emphasis on novel imaging techniques that offer the promise of better reconstructions at 1.3 mm and other wavelengths.Comment: 10 pages, proceedings contribution for Blazars through Sharp Multi-Wavelength Eyes, submitted to Galaxie

    PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities

    Get PDF
    54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe

    First M87 Event Horizon Telescope Results. III. Data Processing and Calibration

    Get PDF
    We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ∼1 mJy on baselines to ALMA and ∼10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ∼3.4 and ∼8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87

    First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring

    Get PDF
    The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to b

    Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign

    Get PDF
    High Energy AstrophysicsInstrumentatio

    First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring

    Get PDF
    The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106 M ⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication

    The polarized image of a synchrotron-emitting ring of gas orbiting a black hole

    Get PDF
    High Energy Astrophysic

    Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

    Get PDF
    InstrumentationLarge scale structure and cosmolog

    First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole

    Get PDF
    We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others\u27 work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions
    corecore