903 research outputs found

    Capturing Concern: Understanding Perceptions of Wildlife-associated Disease Risk

    Full text link
    Click on the PDF for an Executive Summary and the full report. Visit the HDRU website for a complete listing of HDRU publications at: http://hdru.dnr.cornell.edu

    Data Assimilation Fundamentals

    Get PDF
    This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation

    Morphing Ensemble Kalman Filters

    Full text link
    A new type of ensemble filter is proposed, which combines an ensemble Kalman filter (EnKF) with the ideas of morphing and registration from image processing. This results in filters suitable for nonlinear problems whose solutions exhibit moving coherent features, such as thin interfaces in wildfire modeling. The ensemble members are represented as the composition of one common state with a spatial transformation, called registration mapping, plus a residual. A fully automatic registration method is used that requires only gridded data, so the features in the model state do not need to be identified by the user. The morphing EnKF operates on a transformed state consisting of the registration mapping and the residual. Essentially, the morphing EnKF uses intermediate states obtained by morphing instead of linear combinations of the states.Comment: 17 pages, 7 figures. Added DDDAS references to the introductio

    Transfection efficiency and cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte and macrophage origin

    Get PDF
    AbstractThe transfection efficiency of liposome-based DNA formulations was studied in different salmonid cell lines of hepatocyte and macrophage origin. Parallel assessment of cell viability was carried out to define the balance between transfection efficiency and toxicity. For all cell lines, transfection efficiency varied with the lipoplex charge ratio and the amount of DNA added to the liposomes. The hepatocyte-derived cell line was most readily transfected while lower transfection efficiency was observed for the macrophage cell lines. The cationic liposomes showed a dose-dependent toxicity and were found to be most toxic for cells of macrophage origin. This was in line with the observation that higher amounts of lipids were associated with the cells of macrophage origin than the hepatocytes. Complexing DNA with the liposomes reduced the toxicity for all three cell lines, most markedly, however, for macrophage cell lines. The differences in the transfection and toxicity patterns between the cell lines are probably caused by differences in membrane composition as well as differences in phagocytic activity and processing of the liposomes/lipoplexes

    Data Assimilation Fundamentals

    Get PDF
    This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation

    Application and comparison of Kalman filters for coastal ocean problems : an experiment with FVCOM

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C05011, doi:10.1029/2007JC004548.Twin experiments were made to compare the reduced rank Kalman filter (RRKF), ensemble Kalman filter (EnKF), and ensemble square-root Kalman filter (EnSKF) for coastal ocean problems in three idealized regimes: a flat bottom circular shelf driven by tidal forcing at the open boundary; an linear slope continental shelf with river discharge; and a rectangular estuary with tidal flushing intertidal zones and freshwater discharge. The hydrodynamics model used in this study is the unstructured grid Finite-Volume Coastal Ocean Model (FVCOM). Comparison results show that the success of the data assimilation method depends on sampling location, assimilation methods (univariate or multivariate covariance approaches), and the nature of the dynamical system. In general, for these applications, EnKF and EnSKF work better than RRKF, especially for time-dependent cases with large perturbations. In EnKF and EnSKF, multivariate covariance approaches should be used in assimilation to avoid the appearance of unrealistic numerical oscillations. Because the coastal ocean features multiscale dynamics in time and space, a case-by-case approach should be used to determine the most effective and most reliable data assimilation method for different dynamical systems.P. Malanotte-Rizzoli and J. Wei were supported by the Office of Naval Research (ONR grant N00014-06-1- 0290); C. Chen and Q. Xu were supported by the U.S. GLOBEC/Georges Bank program (through NSF grants OCE-0234545, OCE-0227679, OCE- 0606928, OCE-0712903, OCE-0726851, and OCE-0814505 and NOAA grant NA-16OP2323), the NSF Arctic research grants ARC0712903, ARC0732084, and ARC0804029, and URI Sea Grant R/P-061; P. Xue was supported through the MIT Sea Grant 2006-RC-103; Z. Lai, J. Qi, and G. Cowles were supported through the Massachusetts Marine Fisheries Institute (NOAA grants NA04NMF4720332 and NA05NMF4721131); and R. Beardsley was supported through U.S. GLOBEC/Georges Bank NSF grant OCE-02227679, MIT Sea Grant NA06OAR1700019, and the WHOI Smith Chair in Coastal Oceanography

    A high efficiency, low background detector for measuring pair-decay branches in nuclear decay

    Get PDF
    We describe a high efficiency detector for measuring electron-positron pair transitions in nuclei. The device was built to be insensitive to gamma rays and to accommodate high overall event rates. The design was optimized for total pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM A

    MMP14 (matrix metallopeptidase 14 (membrane-inserted))

    Get PDF
    Review on MMP14 (matrix metallopeptidase 14 (membrane-inserted)), with data on DNA, on the protein encoded, and where the gene is implicated
    • …
    corecore