1,791 research outputs found
Students' mental prototypes for functions and graphs
This research study investigates the concept of function developed by students studying English A-level mathematics. It shows that, while students may be able to use functions in their practical mathematics, their grasp of the theoretical nature of the function concept may be tenuous and inconsistent. The hypothesis is that students develop prototypes for the function concept in much the same way as they develop prototypes for concepts in everyday life. The definition of the function concept, though given in the curriculum, is not stressed and proves to be inoperative, with their understanding of the concept reliant on properties of familiar prototype examples: those having regular shaped graphs, such as x2 or sin*, those often encountered (possibly erroneously), such as a circle, those in which y is defined as an explicit formula in x, and so on. Investigations reveal significant misconceptions. For example, threequarters of a sample of students starting a university mathematics course considered that a constant function was not a function in either its graphical or algebraic forms, and threequarters thought that a circle is a function. This reveals a wide gulf between the concepts as perceived to be taught and as actually learned by the students
Longitude : a privacy-preserving location sharing protocol for mobile applications
Location sharing services are becoming increasingly popular. Although many location sharing services allow users to set up privacy policies to control who can access their location, the use made by service providers remains a source of concern. Ideally, location sharing providers and middleware should not be able to access usersâ location data without their consent. In this paper, we propose a new location sharing protocol called Longitude that eases privacy concerns by making it possible to share a userâs location data blindly and allowing the user to control who can access her location, when and to what degree of precision. The underlying cryptographic algorithms are designed for GPS-enabled mobile phones. We describe and evaluate our implementation for the Nexus One Android mobile phone
A New View on Worst-Case to Average-Case Reductions for NP Problems
We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that
under reasonable assumptions, there is no non-adaptive worst-case to
average-case reduction that bases the average-case hardness of an NP-problem on
the worst-case complexity of an NP-complete problem. We replace the hiding and
the heavy samples protocol in [BT03] by employing the histogram verification
protocol of Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very
useful in this context. Once the histogram is verified, our hiding protocol is
directly public-coin, whereas the intuition behind the original protocol
inherently relies on private coins
Towards magnetic slowing of atoms and molecules
We outline a method to slow paramagnetic atoms or molecules using pulsed
magnetic fields. We also discuss the possibility of producing trapped particles
by adiabatic deceleration of a magnetic trap. We present numerical simulation
results for the slowing and trapping of molecular oxygen
Quantum Diffusion in Separable d-Dimensional Quasiperiodic Tilings
We study the electronic transport in quasiperiodic separable tight-binding
models in one, two, and three dimensions. First, we investigate a
one-dimensional quasiperiodic chain, in which the atoms are coupled by weak and
strong bonds aligned according to the Fibonacci chain. The associated
d-dimensional quasiperiodic tilings are constructed from the product of d such
chains, which yields either the square/cubic Fibonacci tiling or the labyrinth
tiling. We study the scaling behavior of the mean square displacement and the
return probability of wave packets with respect to time. We also discuss
results of renormalization group approaches and lower bounds for the scaling
exponent of the width of the wave packet.Comment: 6 pages, 4 figures, conference proceedings Aperiodic 2012 (Cairns
Unsplittable coverings in the plane
A system of sets forms an {\em -fold covering} of a set if every point
of belongs to at least of its members. A -fold covering is called a
{\em covering}. The problem of splitting multiple coverings into several
coverings was motivated by classical density estimates for {\em sphere
packings} as well as by the {\em planar sensor cover problem}. It has been the
prevailing conjecture for 35 years (settled in many special cases) that for
every plane convex body , there exists a constant such that every
-fold covering of the plane with translates of splits into
coverings. In the present paper, it is proved that this conjecture is false for
the unit disk. The proof can be generalized to construct, for every , an
unsplittable -fold covering of the plane with translates of any open convex
body which has a smooth boundary with everywhere {\em positive curvature}.
Somewhat surprisingly, {\em unbounded} open convex sets do not misbehave,
they satisfy the conjecture: every -fold covering of any region of the plane
by translates of such a set splits into two coverings. To establish this
result, we prove a general coloring theorem for hypergraphs of a special type:
{\em shift-chains}. We also show that there is a constant such that, for
any positive integer , every -fold covering of a region with unit disks
splits into two coverings, provided that every point is covered by {\em at
most} sets
Localized helium excitations in 4He_N-benzene clusters
We compute ground and excited state properties of small helium clusters 4He_N
containing a single benzene impurity molecule. Ground-state structures and
energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body
diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational
motion near the molecule surface are evaluated using the projection operator,
imaginary time spectral evolution (POITSE) method. We find excitation energies
of up to ~23 K above the ground state. These states all possess vibrational
character of helium atoms in a highly anisotropic potential due to the aromatic
molecule, and can be categorized in terms of localized and collective
vibrational modes. These results appear to provide precursors for a transition
from localized to collective helium excitations at molecular nanosubstrates of
increasing size. We discuss the implications of these results for analysis of
anomalous spectral features in recent spectroscopic studies of large aromatic
molecules in helium clusters.Comment: 15 pages, 5 figures, submitted to Phys. Rev.
Atomistic origins of high-performance in hybrid halide perovskite solar cells
The performance of organometallic perovskite solar cells has rapidly
surpassed that of both conventional dye-sensitised and organic photovoltaics.
High power conversion efficiency can be realised in both mesoporous and
thin-film device architectures. We address the origin of this success in the
context of the materials chemistry and physics of the bulk perovskite as
described by electronic structure calculations. In addition to the basic
optoelectronic properties essential for an efficient photovoltaic device
(spectrally suitable band gap, high optical absorption, low carrier effective
masses), the materials are structurally and compositionally flexible. As we
show, hybrid perovskites exhibit spontaneous electric polarisation; we also
suggest ways in which this can be tuned through judicious choice of the organic
cation. The presence of ferroelectric domains will result in internal junctions
that may aid separation of photoexcited electron and hole pairs, and reduction
of recombination through segregation of charge carriers. The combination of
high dielectric constant and low effective mass promotes both Wannier-Mott
exciton separation and effective ionisation of donor and acceptor defects. The
photoferroic effect could be exploited in nanostructured films to generate a
higher open circuit voltage and may contribute to the current-voltage
hysteresis observed in perovskite solar cells.Comment: 6 pages, 5 figure
- âŠ