873 research outputs found

    How can malaria rapid diagnostic tests achieve their potential? A qualitative study of a trial at health facilities in Ghana.

    Get PDF
    BACKGROUND: Rapid diagnostic tests (RDTs) for malaria are at the early stages of introduction across malaria endemic countries. This is central to efforts to decrease malaria overdiagnosis and the consequent overuse of valuable anti-malarials and underdiagnosis of alternative causes of fever. Evidence of the effect of introducing RDTs on the overprescription of anti-malarials is mixed. A recent trial in rural health facilities in Ghana reduced overprescription of anti-malarials, but found that 45.5% patients who tested negative with RDTs were still prescribed an anti-malarial. METHODS: A qualitative study of this trial was conducted, using in-depth interviews with a purposive sample of health workers involved in the trial, ranging from those who continued to prescribe anti-malarials to most patients with negative RDT results to those who largely restricted anti-malarials to patients with positive RDT results. Interviews explored the experiences of using RDTs and their results amongst trial participants. RESULTS: Meanings of RDTs were constructed by health workers through participation with the tests themselves as well as through interactions with colleagues, patients and the research team. These different modes of participation with the tests and their results led to a change in practice for some health workers, and reinforced existing practice for others. Many of the characteristics of RDTs were found to be inherently conducive to change, but the limited support from purveyors, lack of system antecedents for change and limited system readiness for change were apparent in the analysis. CONCLUSIONS: When introduced with a limited supporting package, RDTs were variously interpreted and used, reflecting how health workers had learnt how to use RDT results through participation. To build confidence of health workers in the face of negative RDT results, a supporting package should include local preparation for the innovation; unambiguous guidelines; training in alternative causes of disease; regular support for health workers to meet as communities of practice; interventions that address negotiation of health worker-patient relationships and encourage self-reflection of practice; feedback systems for results of quality control of RDTs; feedback systems of the results of their practice with RDTs; and RDT augmentation such as a technical and/or clinical troubleshooting resource

    Discussion of a physical optics method and its application to absorbing smooth and slightly rough hexagonal prisms

    Get PDF
    Three different mathematical solutions of a physical optics model for far field diffraction by an aperture due to Karczewski and Wolf are discussed. Only one of them properly describes diffraction by an aperture and can, by applying Babinet's principle, be used to model diffraction by the corresponding plane obstacle, and by further approximation, diffraction by a particle. Studying absorbing scatterers allows a closer investigation of the external diffraction component because transmission is negligible. The physical optics model has been improved on two aspects: (i) To apply the diffraction model based on two-dimensional apertures more accurately to three-dimensional objects, a size parameter dependent volume obliquity factor is introduced, thus reducing the slightly overestimated side scattering computed for three-dimensional objects. (ii) To compensate simplifications in the underlying physical optics diffraction model for two-dimensional apertures [26] a size parameter dependent cross polarisation factor is implemented. It improves cross polarisation for diffraction and reflection by small particle facets. 2D patterns of P 11, –P 12/P 11 and P 22/P 11 and their azimuthal averages for slightly rough absorbing hexagonal prisms in fixed orientation are obtained and compared with results from the discrete dipole approximation. For particle orientations where shadowing is not negligible, improved phase functions are obtained by using a new method where the incident beam is divided into sub-beams with small triangular cross sections. The intersection points of the three sub-beam edges with the prism define the vertices of a triangle, which is treated by the beam tracer as an incidence-facing facet. This ensures that incident facing but shadowed crystal facets or regions thereof do not contribute to the phase functions. The method captures much of the fine detail contained in 2D scattering patterns obtained with DDA. This is important as speckle can be used for characterizing the size and roughness of small particles such as ice crystals.Peer reviewedFinal Accepted Versio

    Assessing High School Gifted Student Progress in Science Through Misconceptions and MOSART

    Get PDF
    This paper reports how 188 high school students identified as gifted in science were assessed with the Misconceptions-Oriented Standards-Based Assessment Resource for Teachers (MOSART). Students enrolled in a year-long science-centered curriculum where this instrument appeared to be a means of identifying standards-aligned progress, avoiding ceiling effects and reliance on content mastery. This paper discusses two questions: 1. Is the MOSART a valid measure of conceptual understanding in gifted students? and 2. Can the MOSART be used with this population to measure growth in understanding? We present results from the physics and chemistry tests, and consider results from the earth science and astronomy tests. We also discuss refinements to administration procedures and work expanding the subject pool in the coming year

    Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements

    Get PDF
    NERC, NE/E011225/1 © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 LicenseThe knowledge of properties of ice crystals such as size, shape, concavity and roughness is critical in the context of radiative properties of ice and mixed phase clouds. Limitations of current cloud probes to measure these properties can be circumvented by acquiring two-dimensional light scattering patterns instead of particle images. Such patterns were obtained in situ for the first time using the Small Ice Detector 3 (SID-3) probe during several flights in a variety of mid-latitude mixed phase and cirrus clouds. The patterns are analyzed using several measures of pattern texture, selected to reveal the magnitude of particle roughness or complexity. The retrieved roughness is compared to values obtained from a range of well-characterized test particles in the laboratory. It is found that typical in situ roughness corresponds to that found in the rougher subset of the test particles, and sometimes even extends beyond the most extreme values found in the laboratory. In this study we do not differentiate between small-scale, fine surface roughness and large-scale crystal complexity. Instead, we argue that both can have similar manifestations in terms of light scattering properties and also similar causes. Overall, the in situ data is consistent with ice particles with highly irregular or rough surfaces being dominant. Similar magnitudes of roughness were found in growth and sublimation zones of cirrus. The roughness was found to be negatively correlated with the halo ratio, but not with other thermodynamic or microphysical properties found in situ. Slightly higher roughness was observed in cirrus forming in clean oceanic airmasses than in a continental, polluted one. Overall, the roughness and complexity is expected to lead to increased shortwave cloud reflectivity, in comparison with cirrus composed of more regular, smooth ice crystal shapes. These findings put into question suggestions that climate could be modified through aerosol seeding to reduce cirrus cover and optical depth, as the seeding may result in decreased shortwave reflectivity.Peer reviewe

    Wide-field Magnetic Field and Temperature Imaging using Nanoscale Quantum Sensors

    Full text link
    The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our "quantum conformally-attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields

    Studies of Ecology and Morphology in the plethodontid salamander genus Batrachoseps

    Get PDF
    Studies of Ecology and Morphology in the plethodontid salamander genus BatrachosepsbyChristopher James EvelynEvolution of interspecific morphological diversity within a clade is one of the fundamental patterns studied in evolutionary biology. These morphological differences may reflect adaptation to different environmental conditions and influence patterns across biogeographical spatial scales and macroevolutionary time scales. Using a multivariate measure of morphological shape and a well-studied phylogenetic hypothesis for the plethodontid salamander genus Batrachoseps, I revealed the strong correlation between morphology and species range size, and tested ecological hypotheses that might explain this relationship. Morphological evolution in Batrachoseps can be generally described as variation on the theme of elongation, a pattern also seen in several families of lizards such as Scincidae and Gymnophthalmidae. In Batrachoseps the most elongate forms appear wormlike with highly reduced limbs. Generalized forms of Batrachoseps are similar in proportion to other small salamanders in the family Plethodontidae, such as Plethodon. To investigate whether morphological differences reflect a difference in habitat use, a pair of closely related species were studied where their ranges overlap (Chapter 1). Broad partitioning of habitat was the rule with the wormlike B. nigriventris occupying low to middle elevation sites (600-1200 meters) and the more generalized B. stebbinsi occupying middle to high elevation sites (1100-1800 meters). These species showed considerable overlap in their use of microhabitat in terms of temperature, moisture, and cover objects. Despite their ecological similarity B. nigriventris has a much larger species range (34,000 km2) than B. stebbinsi (1,300 km2). This is consistent with the strong correlation between evolution of species range size and evolution of elongation in Batrachoseps (Chapter 2). Species range size in wormlike species is an order of magnitude larger than more generalized forms. Overall the evolution of elongation in Batrachoseps is a strong and significant predictor of the evolution of large range size. This pattern is not achieved by wormlike forms evolving to occupy wider elevational ranges or more abundant low elevation habitat. Large range size is an important metric for predicting the probability of species extinction. Finding traits that predict extinction is of central interest to the study of conservation biology and macroevolution. A previously proposed hypothesis posited that evolution of wormlike morphology in Batrachoseps is a response to dry, seasonal, and unpredictable precipitation patterns. Individuals with small diameters could more easily retreat to subsurface refugia when surface conditions are inhospitable. These small salamanders depend upon seasonal precipitation events for surface activity to carry out basic life history activities. When surface conditions are moist Batrachoseps feed, breed, and re-hydrate after long periods of inactivity below the surface. I found a strong correlation between evolution of wormlike morphology and evolution to persist in more seasonal habitats (Chapter 3). Dry season precipitation and precipitation seasonality were significantly correlated with morphological evolution in Batrachoseps. This result suggests that wormlike morphology is advantageous in habitats where food resources and mating opportunities are only available periodically. All Batrachoseps appear to occupy similar microhabitat but persistence in highly seasonal habitats with low levels of dry season precipitation is associated with evolution of elongate morphology

    Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In1x_{1-x}Cdx_x)5_5

    Full text link
    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1x_{1-x}Cdx_x)5_5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.Comment: Article + Supplementary information 33 pages, 13 figure
    corecore