
 
 
 
 

 
Citation for the published version:  
 
Hesse, E, Taylor, L, Collier, CT, Penttila, A, Nousiainen, T & Ulanowski, Z (2018), 
'Discussion of a physical optics method and its application to absorbing smooth and 
slightly rough hexagonal prisms' Journal of Quantitative Spectroscopy and Radiative 
Transfer, vol 218, 10.1016/j.jqsrt.2018.06.019, pp. 54-67  
 
Document Version:  Accepted Version 
 
This manuscript is made available under the CC-BY-NC-ND license 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
Link to the final published version available at the publisher:  
 
https://doi.org/10.1016/j.jqsrt.2018.06.019  

 

 

 

 

 

 

General rights 

Copyright© and Moral Rights for the publications made accessible on this site are retained by the 
individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied and it is a 
condition of accessing publications that users recognise and abide by the legal requirements 
associated with these rights. You may not engage in further distribution of the material for any 
profitmaking activities or any commercial gain. You may freely distribute both the url 
(http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or 
not-for-profit purposes without prior permission or charge. 

Take down policy 

If you believe that this document breaches copyright please contact us providing details, any such 
items will be temporarily removed from the repository pending investigation. 

Enquiries 

Please contact University of Hertfordshire Research & Scholarly Communications for any enquiries at 
rsc@herts.ac.uk 

https://doi.org/10.1016/j.jqsrt.2018.06.019


1 
 

Discussion of a physical optics method and its application to absorbing smooth and slightly rough 

hexagonal prisms 

E. Hessea, L. Taylora, C.T. Colliera, A. Penttiläb, T. Nousiainenc, Z. Ulanowskia 

 

aUniversity of Hertfordshire, Centre for Atmospheric and Climate Physics Research, Hatfield, 
Hertfordshire AL10 9AB, UK 

bDepartment of Physics, P.O. Box 64, University of Helsinki, FI-00014, Finland 

cFinnish Meteorological Institute, FI-00101 Helsinki, Finland 

 

Keywords: light scattering, diffraction, absorbing facetted particle, rough particle  

 

Abstract 

Three different mathematical solutions of a physical optics model for far field diffraction by an 

aperture due to Karczewski and Wolf are discussed. Only one of them properly describes diffraction 

by an aperture and can, by applying Babinet’s principle, be used to model diffraction by the 

corresponding plane obstacle, and by further approximation, diffraction by a particle. Studying 

absorbing scatterers allows a closer investigation of the external diffraction component because 

transmission is negligible. The physical optics model has been improved on two aspects: (i) To apply 

the diffraction model based on two-dimensional apertures more accurately to three-dimensional 

objects, a size parameter dependent volume obliquity factor is introduced, thus reducing the slightly 

overestimated side scattering computed for three-dimensional objects. (ii) To compensate 

simplifications in the underlying physical optics diffraction model for two-dimensional apertures [26] 

a size parameter dependent cross polarisation factor is implemented. It improves cross polarisation 

for diffraction and reflection by small particle facets. 2D patterns of P11, -P12/P11 and P22/P11 and their 

azimuthal averages for slightly rough absorbing hexagonal prisms in fixed orientation are obtained 

and compared with results from the discrete dipole approximation. For particle orientations where 

shadowing is not negligible, improved phase functions are obtained by using a new method where 

the incident beam is divided into sub-beams with small triangular cross sections. The intersection 

points of the three sub-beam edges with the prism define the vertices of a triangle, which is treated 

by the beam tracer as an incidence-facing facet. This ensures that incident facing but shadowed 

crystal facets or regions thereof do not contribute to the phase functions. The method captures 

much of the fine detail contained in 2D scattering patterns obtained with DDA. This is important as 

speckle can be used for characterizing the size and roughness of small particles such as ice crystals. 
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1. Introduction 

The Earth–atmosphere radiation balance is influenced by the scattering and absorption of solar 
radiation by airborne particles such as ice crystals [1] and Saharan dust [2]. For radiative transfer 
computations a more realistic parameterisation of the bulk single scattering properties (phase 
functions, volume extinction coefficients, single scattering albedos etc.) of these particles is 
required. To achieve this, a detailed knowledge of particle shapes, sizes and composition is essential 
[1]. Imaging methods (for a discussion of methods and instruments see e.g. [3]) are widely used for 
particle characterisation, however for small particles optical aberrations and constrained depth of 
field restrict the quality of the information obtainable. Such constraints do not apply to instruments 
such as the Small Ice Detector (SID) [4,5], which acquire far field scattering patterns. For complex or 
rough particles, the presence of two-dimensional speckle can be used to derive both particle size [6] 
and roughness [5]. However, obtaining quantitative morphological data by inversion of the patterns 
can be very challenging. Therefore, the creation of databases of two-dimensional (2D) scattering 
patterns of known particle morphologies is extremely useful for particle characterization. Exact 
methods such as T-matrix [7] and semi-exact methods like the finite difference time domain (FDTD) 
method [8] and the discrete dipole approximation (DDA) [9,35] can be used for computations of 
light-scattering properties for non-axisymmetric particles. Those methods that are most versatile 
and can be applied to arbitrary particle morphologies are computationally most demanding and 
cannot be used if the objects are much larger than the wavelength. For single orientations the 
computational burden is strongly reduced, allowing application to larger sizes, as is done here with 
the DDA method. 

Approximate methods, such as the geometric optics approximation or physical optics have 
to be used for scatterers much larger than the wavelength of radiation. In the classical geometric 
optics approximation, scattered light is divided into two parts, firstly light reflected or transmitted by 
the scatterer, and secondly externally diffracted light. Diffraction of reflected and refracted light is 
neglected. Improved methods including diffraction of the ray-tracing component have been 
presented e.g. in [10-13]. A volume integral method, which avoids the separation between 
externally diffracted and reflected/transmitted light, has also been presented [14-16]. Nevertheless, 
computational methods that calculate the ray-tracing and diffraction contributions separately, are 
still widely used. In many applications, e.g. [17-19], external diffraction is approximated by 
Fraunhofer diffraction on the projected cross section, applying Babinet’s principle. Macke et al. [17] 
approximated diffraction by polyhedral particles as diffraction by polygonal apertures corresponding 
to the projected particle cross section, using the Kirchhoff approximation. The method to calculate 
diffraction by a circular aperture at oblique incidence by means of the Kirchhoff approximation ([20], 
chapter 10.9) has recently been extended to oblique incidence on polygonal apertures and applied 
to compute 2D scattering patterns and phase function of absorbing [21,22] and transparent [23] 
facetted particles in fixed orientation. (In geometric optics 2D scattering patterns for fixed particle 
orientations do not show the familiar scattering arcs but only scattering points. This is due to the 
singular directions of rays or beams reflected from faceted particles, see e.g. [24]). The method [23] 
has been applied to interpret two-dimensional reflections of a lidar beam by ice crystals [25]. In [22, 
23] we applied the approximate vector method described by Karczewski and Wolf [26,27] to model 
light scattering by absorbing facetted particles. This method expresses electric and magnetic fields 
using electric and magnetic Hertz vectors. Karczewski and Wolf also proposed alternative 
approximations, expressing electric and magnetic fields using either electric or magnetic Hertz 
vectors alone. These alternative solutions have been discussed in the current literature [28]. Aiming 
for clarification, we investigate these alternative solutions and in particular the high backscattering 
reported in [28] at the beginning of section 2.1 of this paper. As an example, diffraction by a 
hexagonal prism is computed, making use of Babinet’s principle.  
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Here, our main interest is in modelling 2D scattering patterns, i.e. azimuthally resolved 
phase functions, of single particles. Studying absorbing scatterers allows a closer investigation of the 
external diffraction component because transmission is negligible. In [21,22] we found by 
comparison with DDA, which is a semi-exact method, that side scattering was slightly too high in our 
beam tracing results. It was conjectured that this was due to modelling Kirchhoff diffraction by 
individual facets of the scatterer, disregarding the fact that they were part of a three-dimensional 
object. The contribution of edge effects have been discussed e.g. in [29]. In the second part of 
section 2.1 we introduce a volume obliquity factor to allay this problem. Comparisons of the phase 
function and P12 phase matrix element with DDA results are used to find this parameter for a smooth 
hexagonal prism. The P22 phase matrix element is also improved when applying the volume obliquity 
factor, however cross polarisation is still too high. To alleviate this, a cross polarisation factor is 
introduced. 

Particle roughness has been reported to alter the scattering properties of ice crystals, in 

some cases even dramatically [5,30,31,41]. To model deviations from perfect hexagonal particle 

symmetry, Macke et al. [17] had introduced random tilt of facets. Yang and Liou applied a similar 

method to approximate polyhedral facets with Gaussian roughness [32]. Furthermore, the approach 

[17] has been used to simulate rough surfaces after including Weibull statistics [30] or a normal 

distribution for the random tilt [33], respectively. The random tilt method has also been 

implemented in the Improved Geometric Optics Method (IGOM) [33,34]. However, the random tilt 

method does not model continuous surfaces. Results for a version of IGOM for randomly aligned 

hexagonal prisms with geometrically defined roughened surfaces have been published by Liu et al. 

[33]. In order to compute reflection by dielectric particles, diffraction of the reflected component 

determined from the Fresnel equations has to be calculated [21-23]. The case of high absorption is 

particularly suitable for studying how the three-dimensional nature of the scattering object affects 

external diffraction. Here we compute scattering by an absorbing, slightly rough dielectric prism. 

Accurate phase treatment is essential. 

The remainder of this article is structured as follows: In section 2 we describe our method 

and results. A summary describing the applied diffraction model is given in section 2.1. In its first 

subsection we investigate different boundary conditions proposed by Karczewski and Wolf [26] in 

order to decide which of them should be used for modelling scattering by dielectric particles. In the 

following subsection the applicability of our diffraction model based on substituting two-

dimensional apertures for three-dimensional objects is investigated for the case of an absorbing 

hexagonal prism for different size parameters and orientations by comparing the scattering phase 

matrix elements P11, P11/P12 and P22/P11 with DDA results. A size-dependent volume obliquity factor is 

introduced to better approximate side-scattering for external diffraction. An also size-dependent 

cross polarisation factor is introduced for both external diffraction and reflection, to approximate 

depolarisation more accurately, especially for small size parameters. In section 2.2 the model is 

applied to slightly rough absorbing prisms and the results are compared with DDA [35] for fixed 

orientations. Conclusions are given in section 3. 

 

2. Method and Results 

The method used here combines geometric optics beam tracing with diffraction. Externally reflected 

beams and beams refracted out of the particle undergo diffraction at the respective facet. For the 

strongly absorbing particles investigated here, only external reflection is considered. External 

diffraction is computed by applying Babinet’s principle to beam-facing facets. The amplitude matrix 

and corresponding phase matrix for each scattering angle are calculated. The diffraction model used 

for calculating external diffraction and diffraction of reflected beams is discussed in section 2.1. 

Firstly, alternative options for boundary conditions described by Karczewski and Wolf [26] are 
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considered. Secondly, the effect of three-dimensionality of the facetted object on external 

diffraction is investigated for the example of a hexagonal prism. In section 2.2 the model is applied 

to compute 2D scattering patterns of a strongly absorbing hexagonal prism with slightly rough 

surface. 

 

2.1 The diffraction model 

In [22] we used the method described by Karczewski and Wolf [26] to compute far-field diffraction 

patterns for diffraction of a plane wave by an aperture. The authors of [26] imposed approximate 

boundary conditions of the Kirchhoff type (i.e. continuity of the tangential components of the 

electric field E and the magnetic field H) and assumed that the diffracted field obeys the vectorial 

form of the Sommerfeld radiation condition at infinity in the half-space into which the field is 

propagated.  

They showed that the electric field at a point P in the Fraunhofer region is given by [26] 

𝐄(𝑃) = 𝐤̂ × (𝐅 × 𝐄𝟎) + 𝜇0𝑐[(𝐅 × 𝐇𝟎) − 𝐤̂ ∙ (𝐅 × 𝐇𝟎)𝐤̂]      (1) 

where  𝐅 =
𝑖𝑘0

4𝜋

exp(𝑖𝑘0𝑟)

𝑟
𝐧̂∬ exp[𝑖𝑘0(𝐊̂ − 𝐤̂) ∙ 𝐑] 𝑑𝑆 = 𝐹𝐧̂

𝐴
     (2) 

is the integral over the aperture (Fig. 1). Here, 𝑘0 is the wave number, 𝐊̂ is the unit vector in 

direction of propagation of the field incident at an angle α to the surface normal (z’ axis). The plane 

of incidence is chosen to be the x’z’ plane, which acts as a reference plane. 𝐄𝟎 and 𝐇𝟎 are amplitude 

vectors of the incident field, 𝐤̂ is the unit vector pointing from the centre of the aperture towards P 

and 𝐑 is the vector pointing from the origin of the coordinate system to the aperture point under 

consideration. The surface integral in Eq. (2) can be evaluated using Green’s theorem: 

 

∫  
𝑆

𝑒𝑖𝑘[𝑥′(sin𝛼+cos𝜑′sin𝜃′)+𝑦′sin𝜑′sin𝜃′+𝑧′(cos𝛼+cos𝜃′)]𝑑𝑥′𝑑𝑦′

= −∮
𝑒𝑖𝑘[𝑥′(sin𝛼+cos𝜑′sin𝜃′)+𝑦′sin𝜑′sin𝜃′+𝑧′(cos𝛼+cos𝜃′)]

2𝑖𝑘sin𝜑′sin𝜃′
𝑆

𝑑𝑥′

+ ∮
𝑒𝑖𝑘[𝑥′(sin𝛼+cos𝜑′sin𝜃′)+𝑦′sin𝜑′sin𝜃′+𝑧′(cos𝛼+cos𝜃′)]

2𝑖𝑘(sin𝛼 + cos𝜑′sin𝜃′)
𝑑𝑦′

𝑆

                                    (3) 

Note that before applying these equations to compute diffraction by a facet of a particle centred at 

the origin, the coordinate system needs to be rotated by a rotation matrix R0 [43] given in the 

appendix, so that the facet becomes aligned parallel to the x’y’ plane. In general, its z’ coordinate 

will be nonzero. Therefore, the exponents of the phase terms in the line integrals in Eq. (3) contain a 

z’ component. This is different from the corresponding equations in [20] and [17, 36], where 

diffraction on the projected cross section of a particle was considered. This is especially important 

for particles with rough surfaces, which are modelled as an ensemble of small facets tilted against 

each other (see section 2.2), and where small phase differences between waves diffracted by 

neighbouring facets will affect the scattering pattern.  

Both the incident and the diffracted field can be represented as a vector sum of one 

component parallel to this plane and one component perpendicular to the first vector and to the 

propagation vector of the wave considered. For this purpose we choose sets of unit vectors [𝐋̂, 𝐌̂] 

and [𝐥̂, 𝐦̂], where 𝐋̂ and 𝐥̂ are positioned in the reference plane, and  𝐌̂ = 𝐋̂ × 𝐊̂, 𝐦̂ = 𝐥̂ × 𝐤̂. 
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Karczewski and Wolf expressed the scattered field 𝐄(e,𝑚) in components parallel and perpendicular 

to the incidence plane [
𝐸𝑙

𝐸𝑚

] = 𝐃 [
𝐸0𝐿

𝐸0𝑀
] where 𝐃 is the amplitude diffraction matrix [26,22]. 

In the next step, by multiplying with a rotation matrix R1 the matrix D is rotated around the vector 𝐤̂ 

into the scattering plane containing the incidence vector 𝐊̂. Finally, the pre-multiplication matrix Rp 

[12,22] is included to rotate the amplitude matrix of the incident beam around its propagation 

vector into the plane containing 𝐤̂. Therefore, the amplitude matrix describing external diffraction by 

the particle into direction 𝐤̂ can be written as SD = R1.D.R0.Rp. Similarly, the amplitude phase matrix 

describing external reflection into direction 𝐤̂ by the particle can be written as SR = R1.D.𝓡.R0.Rp , 

where 𝓡 is the generalised Fresnel amplitude reflection matrix [22].  

 

Fig. 1. Diffraction by an aperture: oblique incidence. 

 

Discussion of boundary conditions proposed in [26] 

The first and second addend at the right hand side of eq. (1) are the electric field components 

derived from magnetic and electric Hertz potentials, respectively. This is indicated by superscripts 

(m) and (e) in Eqs. (4a) and (4b), respectively. 

𝐄(𝑚)(𝑃) = 𝐤̂ × (𝐅 × 𝐄𝟎)         (4a) 

𝐄(𝑒)(𝑃) = 𝜇0𝑐[(𝐅 × 𝐇𝟎) − 𝐤̂ ∙ (𝐅 × 𝐇𝟎)𝐤̂]       (4b) 

Eq. (4a) involves only the tangential component of the electric field on the aperture plane, 

whereas Eq. (4b) involves only the tangential component of the magnetic field on the aperture 

plane. Karczewski and Wolf called the method based on Eq. (1) the (e,m) theory [26]. The 

corresponding diffraction matrix D is given in the appendix. Referring to [37], Karczewski and Wolf 

stated that consistent solutions can also be obtained when imposing the boundary conditions and 

Sommerfeld radiation condition on 𝐄(𝑚) or 𝐄(𝑒) only, calling these approaches the (m) theory and 

the (e) theory, respectively. These results [26] are also discussed in [28,38]. In particular, the authors 

of [11] and [28] have shown that the (e,m) theory is equivalent to the surface integral equation, 

which is derived from the Maxwell equations and can be extended to all scattering directions 

without any truncation. 
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In [22] we applied the (e,m) theory [26] to calculate external diffraction by an isometric 

hexagonal prism. Seeking clarification on the applicability of the (e), (m) and (e,m) theories, we now 

investigate these three approaches for the same case. Prism height, edge length of the basal facets 

and wavelength are 10 μm, 5 μm and 0.5 μm, respectively. As an application of Babinet’s principle, 

the incidence-facing facets are treated as apertures. Fig. 2 shows the results for the scattered 

intensity (left panel) and degree of linear polarisation (DLP) -P12 / P11, where P11 and P12 are elements 

of the phase matrix (right panel) vs. scattering angle for the (e,m), (e) and (m) approaches, and 

additionally for the solution 𝐄(𝑚)(𝑃) − 𝐄(𝑒)(𝑃), which we abbreviate as (-e,m). The angular intensity 

distributions obtained by the (e,m), (e) and (m) methods have a strong peak in the direct forward 

direction representing external diffraction, but both the (e) and (m) solutions also contain strong 

reflection components. These reflection components correspond to a perfectly reflecting particle. 

The identical (-e,m) and (e,-m) solutions represent reflection from the three beam-facing facets. For 

comparison, we show the phase function for a hexagonal prism composed of silver (refractive index 

0.05+3.13i at 500nm [39]) computed by combining the (e,m) solutions for external diffraction and 

reflection as demonstrated in [22].  

Our results are related to findings of Konoshonkin et al. [28], who applied the (e,m), (m) and 

(e) approaches to compute diffraction by a hexagonal aperture for the cases of perpendicular and 

oblique incidence and reported a ‘false maximum as a mirroring of the true maximum’. They 

concluded that (e) and (m) solutions have to be truncated at the plane containing the aperture. Our 

results show essentially the same phenomenon, however we interpret them slightly differently and 

conclude that the (e) and (m) solutions are directly applicable to obtaining the phase functions of 

perfectly conducting particles (i.e. they do not require computing diffraction of the reflected beam in 

a separate step). This can be explained by the choice of boundary conditions: the continuity of the 

tangential E or H field as required for free space is guaranteed, whereas the other respective 

component is disregarded, which for the (e) case in effect corresponds to the boundary condition for 

a conductor, where the tangential component of E is zero [40].  
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Fig. 2. Azimuthally averaged intensity (left panel) and -P12 / P11 (right panel) for the (e,m), (e), (m), (-e,m) and 

(e,-m) external diffraction solutions and combined external diffraction (D) and reflection (R), R-D (the (e,m) 
solution is used for D) for silver (n = 0.05+3.13i) at wavelength 500 nm. The crystal orientation is given in the 
inset of the left panel (light incidence is perpendicular to the page). 

The right panel in Fig. 2 shows the computed DLP for the silver prism obtained from the 

(e,m), (e), (m), (-e,m) and (e,-m) methods and the result for (e)+(m). The mirrored signs for the (e) 

and (m) solutions mean, similarly to findings in [28], that DLP values are only realistic in the regions 

close to the direct forward and backscattering directions and GO reflection peaks (visible in 2D 

patterns not shown here), where the DLP approaches zero. We conclude that the (e) and (m) 
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solutions, although valid from a mathematical point of view, do not fulfil the other essential 

requirement stated by di Franca [37], that the electric/magnetic fields really exist in the aperture 

plane. Therefore, for modelling scattering by dielectric particles only the (e,m) solution should be 

used: part of the light will be refracted into the particle, therefore external reflection will be lower 

than for a conductor and its diffraction must be calculated separately in the method discussed here. 

Approximating diffraction by a three-dimensional facetted particle using the plane aperture 

diffraction model 

Reflection and external diffraction by strongly absorbing dielectric prisms have been 

discussed in detail in [22,23]. For reflection off a dielectric facetted particle, the Fresnel amplitude 

reflection coefficient for each incidence-facing facet is calculated and in the next step diffraction of 

the reflected beam is computed as diffraction by a reflecting polygon in the same way as described 

in section 2.1. However, 𝐊̂, 𝐄𝟎 and 𝐇𝟎 are here the direction of propagation of the reflected ray 

according to geometric optics and its amplitude vectors. Diffraction amplitude matrices are 

subtracted from reflection amplitude matrices [22]. Due to the high imaginary part of the refractive 

index, transmission through the crystal and higher order beam interactions are assumed to be 

negligible. 

Although overall agreement of phase functions with DDA was good, it was initially found that 
modelled sideward diffraction was slightly too high. This is a phenomenon linked to applying physical 
optics approximations. It has been discussed e.g. in [42], [12], and can be found in results reported in 
the literature, e.g. [16]. Unsurprisingly, it is also visible in results obtained from classical geometric 
optics [17] combining ray-tracing with Kirchhoff diffraction at the projected cross section (see also 
discussion of Fig. 4 below). It is most likely due to computing diffraction at thin plane obstacles, 
disregarding the three-dimensional nature of the scattering particle: to propagate into certain far 
field directions, the diffracted radiation would need to ‘move around’ the particle. In the following, 
the amplitude matrix obtained for external diffraction is multiplied by a size-parameter-and- 
scattering-angle-dependent volume obliquity factor 𝑉𝑂𝐹(𝑋, 𝜃) in order to improve the scattering 
patterns and phase functions obtained from our scattering model. In the approximation used here, 
the azimuthal variation of VOF is not considered. Note that VOF is different from the obliquity factor 
commonly used in scalar diffraction theory (e.g. [20], chapter 10.5). Decrease of scattering towards 
the backscattering direction is already inherent in the vector diffraction model [26,22]). As an 
example, light scattering by a smooth hexagonal prism of refractive index n = 1.31 + 0.1i with an 
edge length a of the basal facets and a prism height 2a is investigated for size parameters X = 2πa/λ 
= 20, 40, 62 and 100. Particle orientations were chosen in such a way that there are no reflection 
peaks in the side scattering region: For the DDA calculations, the crystal is kept fixed with its long axis 
parallel to the z-axis and the incident beam, which propagates originally into –z, is rotated. The beam 
is first rotated about the y axis and this is followed by a rotation about the z axis. We describe the 
resulting set up as being ‘off A×B’ where A and B are the rotation angles. Schematics of the three 
investigated particle orientations can be seen on top of Fig. 4 (a). For the volume obliquity factor a fit 
function 

 𝑉𝑂𝐹(𝑋, 𝜃) = cos𝑚(𝑋) (𝜃)          (5a) 

was used. Best fits were obtained using the method of least squares. The parameter 𝑚(𝑋) was 
obtained separately for the investigated size parameters and orientations, see Fig. 3(a). The figure 
shows some variation of m with particle orientation for the same size parameter: 𝑚 is largest for ‘off 
30˚×0˚’, where two facet normals are perpendicular to the incidence direction, and smallest for ‘off 
30˚×30˚’, where all prism facets are noticeably tilted with respect to the incidence direction. For size 
parameter 62 four additional orientations, ‘off 30˚×5˚’, ‘off 30˚×10˚’, ‘off 30˚×20˚’ and ‘off 30˚×25˚’ 
were investigated. It was found that m decreases from ‘off 30˚×0˚’ to ‘off 30˚×20˚’ with the largest 
decrease between ‘off 30˚×15˚’ and ‘off 30˚×20˚’. The value of 𝑚 does not noticeably change 
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between ‘off 30˚×20˚’ and ‘off 30˚×30˚’. Next, averages of 𝑚(𝑋) over the investigated orientations 
were taken for each size parameter. The following fit function was obtained:   

𝑚(𝑋) = −15.085 ∙ exp(−𝑋/240.448) + 13.916.       (5b) 

 

Figs. 4(a) and (b) show comparisons with DDA [35] (black lines) of beam tracer results for phase 

functions and -P12/P11 for the investigated size parameters and orientations, respectively. In the side 

scattering region, the classical geometric optics [17] results (gray lines, shown for size parameter 

100) are very similar to the beam tracer results without VOF. This is due to the fact, that both 

diffraction algorithms are based on Kirchhoff diffraction theory (scalar and vector approximation for 

diffraction on projected cross section in [17] and the beam tracer, respectively). The VOF has not 

been applied to reflection since the reflected beam will point away from the particle, therefore 

obstruction of diffracted components by a convex particle will occur less.  

Due to the values of the Fresnel reflection coefficients, -P12 / P11 is expected to be high at external 

reflection peaks. These are located at 51˚ and 120˚ for ‘off 30˚×0˚’, at 15˚ (shoulder), 43˚, 56.5˚ and 

120˚ for ‘off 30˚×15˚’, and at 28˚, 60˚ and 120˚ for ‘off 30˚×30˚’ (see also peaks in classical geometric 

optics graphs). The peak at 120˚ is due to reflection at the basal facet, whereas the other peaks are 

due to reflections at prism facets. Correspondingly, the graphs computed with the beam tracer 

without applying the VOF (green lines) show two broad maxima with centre between 50˚ and 60˚, 

and 110˚ and 120˚, respectively. The strongly undulating DDA results for size parameter 20 show 

such maxima, too. However, the DDA results for larger size parameters show a broad maximum with 

centre around 95° corresponding to a broad minimum of the phase function, and a shoulder around 

60°. The broad maximum is due to diffracted contributions from the reflection peaks coinciding with 

very low contributions from the essentially unpolarised external diffraction. The phase function has a 

wide minimum around 90˚, but light scattered into this region is strongly linearly polarised. The 

difference between the beam tracer result without the application of VOF and the result from the 

reference method, DDA, is largest for the orientation ‘off 30˚×0˚’. In this orientation two prism facets 

are parallel to the direction of incidence. It seems evident, that external diffraction is obstructed most 

for this orientation (and it might be obstructed even more for alignment of the prism axis parallel to the 

incidence direction). Consequently, the VOF is largest for this orientation for all investigated size 

(a)
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Fig. 3. (a) Exponent m of volume obliquity factor VOF obtained vs. size parameter X for the 
investigated particle orientations. (b) Factor q of cross polarisation obliquity factor CPF obtained vs. 
size parameter X for the investigated particle orientations. 
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parameters, although the difference between orientations is small for size parameter 20. The use of 

orientation averaged rather than orientation-specific VOF can worsen agreement with DDA for 

individual orientations, in particular around size parameter 40. One should note that the high -P12 / P11 

values in side scattering are specific for the high absorption case and therefore provide a strict test 

case. For transparent particles reflection and transmission peaks will contribute to the side scattering 

region, resulting in lower absolute values of -P12 / P11 (see e.g. [41]). Applying the VOF significantly 

improves the beam tracer results for -P12 / P11 for size parameters 62 and 100. At size parameter 20 

the VOF has only minor effect on scattering, since the particle is too small to obstruct the diffracted 

light significantly. 

Fig. 4 (c) shows comparisons with DDA [35] (black lines) of beam tracer results for P22/P11. Again, the 

green lines represent results obtained by Karczewski and Wolf’s method [26], without application of 

the VOF. There is an overall agreement in shape, with values close to 1 in close to direct forward and 

backscattering and a minimum around 120˚ and a shoulder at about 60˚, however the beam tracer 

strongly overestimates the variation of P22/P11 with scattering angle. This trend increases with 

decreasing size parameter. Including the VOF (blue lines) improves the results, however there is still 

a fairly large deviation from the DDA results. It was found that this overestimation of cross-

polarisation is linked to the amplitude matrix for diffracted light derived in [26] using the Kirchhoff 

approximation. Cross polarisation is caused by the [1,2] and [2,1] elements of the matrices SD and SR. 

We introduce a cross polarisation factor obtained as a fit function 

 𝐶𝑃𝐹(𝑋, 𝜗) = 𝑞(𝑋) | sin3(𝜗)| ,          (6a) 

where 𝜗 is the angle between the direction of observation and the respective geometric optics ray, 

i.e. the incident ray for external diffraction and the reflected ray for external reflection. Using the 

method of least squares a fit factor 

 𝑞(𝑋) = −0.6359exp (−
𝑋

60.2777
) + 0.7452        (6b) 

was obtained (Fig. 3b). The variation of the fit values for q with particle orientation for fixed size 

parameter was found to be small. It is assumed that q depends on the beam facing facet size and 

orientation rather than the shape and orientation of the whole particle, and that CPF approaches 

one for large size parameters and near perpendicular incidence. Results are shown as red lines in Fig. 

4 (c), and also (a) and (b). The effect of the CPF on the phase function is negligible. -P12 / P11 is slightly 

increased in the side scattering region. 

Fig. 5 shows the average over the three investigated orientations of the azimuthally averaged P11, -

P12 / P11 and P22 / P11 elements of the phase matrix.  

We have demonstrated here, how studying the interrelation between different elements of the 

scattering matrix for absorbing particles can be used to improve the modelling of external diffraction 

and reflection. The deviation of scattering from modelling results obtained from the (e,m) theory 

[26] will increase towards side scattering (see analogous discussion for scalar diffraction theory in 

[42]). The volume obliquity factor VOF increases with increasing size parameter, affecting scattering 

most for large size parameters (eq. (5a)), i.e. large particle volumes obstructing external diffraction. 

The cross polarisation factor CPF also increases with size parameter, meaning that it affects 

scattering most for small size parameters (eq. (6a)).   
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Fig.4  Azimuthally averaged elements of the phase matrix for a smooth hexagonal prism of refractive 

index 1.31 + 0.1i with an edge length a of the basal facets and a prism height 2 a for size parameters 

X = 2 πa / λ = 20, 40, 62 and 100 computed with DDA (black line), beam tracer with diffraction 

formulae [26] (green line), with VOF for external diffraction (blue line), with VOF for external 

diffraction and CPF for external diffraction and reflection (orange line) and with orientation averaged 

VOF and CPF (red line). (a) P11 (for X = 100 additionally classical geometric optics results are shown 

(gray line)), (b) -P12 /P 11 , (c) P 22 /P 11 .  

(a) 
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Fig.4  Azimuthally averaged elements of the phase matrix for a smooth hexagonal prism of refractive 

index 1.31 + 0.1i with an edge length a of the basal facets and a prism height 2 a for size parameters 

X = 2 πa / λ = 20, 40, 62 and 100 computed with DDA (black line), beam tracer with diffraction 

formulae [26] (green line), with VOF for external diffraction (blue line), with VOF for external 

diffraction and CPF for external diffraction and reflection (orange line) and with orientation averaged 

VOF and CPF (red line). (a) P11 (for X = 100 additionally classical geometric optics results are shown 

(gray line)), (b) -P12 /P 11 , (c) P 22 /P 11 . 
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Fig.4  Azimuthally averaged elements of the phase matrix for a smooth hexagonal prism of refractive 

index 1.31 + 0.1i with an edge length a of the basal facets and a prism height 2 a for size parameters 

X = 2 πa / λ = 20, 40, 62 and 100 computed with DDA (black line), beam tracer with diffraction 

formulae [26] (green line), with VOF for external diffraction (blue line), with VOF for external 

diffraction and CPF for external diffraction and reflection (orange line) and with orientation averaged 

VOF and CPF (red line). (a) P11 (for X = 100 additionally classical geometric optics results are shown 

(gray line)), (b) -P12 /P 11 , (c) P 22 /P 11 .   

(c) 
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Fig. 5. Average over the three investigated orientations of the azimuthally averaged P11, -P12 / P11 and P22 / P11 

elements of the phase matrix for a smooth hexagonal prism of refractive index 1.31+0.1i prism with an edge 

length a of the basal facets and a prism height 2a for size parameters X = 2πa/λ = 20, 40, 62 and 100 computed 

with DDA (black line) and beam tracer with VOF for external diffraction and CPF for external diffraction and 

reflection (red line). 
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2.2 Application to slightly rough absorbing hexagonal prisms 

Next, we investigate the applicability of this method to a slightly rough hexagonal prism with 

edge length 5 μm of the basal facets and a prism height 10 μm at a wavelength of 0.5 μm (size 

parameter 62). The construction of the rough crystal model is described in [41]. The Gaussian 

random surface has a standard deviation of 0.1 μm and a correlation length of 0.5 μm - see top of 

Fig. 6 for a visual representation of the particle. The average surface element (facet) size is 0.412 

times the wavelength. 

Since external diffraction is essentially determined by the particle contour, we compute it as 

diffraction by a smooth prism with the same overall dimensions [22], but include the factors VOF 

and CPF from section 2.1. External reflection is computed including the factor CPF. Contributions 

into any direction are obtained by summation of the reflection amplitude matrices for all beam-

facing facets positioned on beam-facing parent facets [41] (i.e. basal or prism facets). Since the slight 

differences in 3D contour between the smooth and rough prism affect phase, external reflection and 

diffraction intensities (not amplitudes) are added.  

The phase functions obtained by the beam tracer in this way are represented by blue lines in 

the first row of Fig. 6. They agree well with DDA (black lines), in particular for the orientation ‘off 

30˚×0˚’. For the other two orientations, P11 is slightly too high in the angular regions linked to 

reflections from prism facets labelled 1 and 3 in the upper row of Fig. 6 (15˚ and 43˚ for ‘off 30˚×15˚’, 

and 28˚ for ‘off 30˚×30˚’), and in side scattering. We assume that this is due to not considering 

shadowing, which will increase with obliqueness of incidence and should be strongest for facet 3 in 

orientation ‘off 30˚×15˚’. To address this problem, we have designed a method where the incident 

beam is divided into sub-beams with equilateral triangular cross sections. The intersection points of 

the three beam edges with the prism define the vertices of a triangle, which is treated as an 

incident-facing ‘facet’ by the beam tracer. In this way, we make sure that incidence-facing but 

shadowed crystal facets or regions thereof do not contribute to the phase functions, the results are 

represented by red lines in Fig. 6. In order to faithfully represent the crystal surface for the light 

scattering problem, a beam edge length of 0.125 μm (corresponding to a beam edge to wavelength 

ratio of 0.25) was chosen. This new method results in improved phase functions, in particular in the 

side scattering region. For comparison, Fig. 6 shows also results obtained by classical geometric 

optics (i.e. ray-tracing combined with Fraunhofer diffraction at the projected cross section, gray 

lines). Compared to the other methods, the reflection peaks, in particular in the forward scattering 

hemisphere, are much smoothed out. This is due to the fact that ray-tracing does not include phase 

and externally reflected light does not undergo diffraction. The latter also causes scattering in the 

region between 160˚ and 180˚ to be too low. Comparisons of 2D patterns with DDA are given in Fig. 

7 (a). We find good agreement of the beam tracer results with DDA - note in particular the 

agreement in shape of the centres of the reflection peaks. 

Azimuthally averaged –P12/P11 and P22/P11 and the respective 2D patterns are shown in the 

2nd and 3rd row of Fig. 6 and in Fig. 7 (b) and (c) respectively. Note that the maximum of –P12/P11 in 

side scattering for the DDA results is even higher than for the smooth prisms (Fig. 4(b)) and is shifted 

towards lower angles (centred around 80˚). This is most likely due to even more reflected light being 

scattered into the sideward region. The shift occurs in the beam tracer results too, however the peak 

height does not increase. The 2D patterns of –P12/P11 obtained from both, DDA and the beam tracer, 

show low linear polarisation arcs spreading from the centre in the forward scattering hemisphere, 

which can be linked to external diffraction. They are surrounded by a ring-shaped high linear 

polarisation area in side scattering, followed by a low linear polarisation area towards direct 

backscattering.  
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P22/P11 deviates less from 1 than for the smooth prism, a trend shown by the beam tracer 

results, too. It is probably also linked to the wider angular distribution of reflected light caused by 

the particle roughness: The regions where P22/P11 is low, i.e. the angle 𝜗 between the geometric 

optics ray and direction of observation is close to 90˚ (see eq. (6a)), spread out. For example, in Fig. 

7(c) the speckle with low P22/P11 on the backscattering hemisphere can be thought of being 

positioned on a ring centred at the 120˚ reflection peak, which changes position with particle 

orientation. 
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Fig. 6. Top: Orientations of the rough hexagonal prism of size parameter 62. Light incidence is perpendicular into the 
page. 1st row: Azimuthally averaged P11 computed with DDA (black line), beam tracing with VOF and CPF (blue line), 
beam tracing with VOF, CPF and triangulated incidence beam of edge length 0.125 μm (red line), and classical 
geometric optics (gray line), 2nd and 3rd row: Azimuthally averaged –P12/P11 and P22/P11, respectively, computed with 
DDA (black line), beam tracing with VOF, CPF and triangulated incidence beam of edge length 0.125 μm (red line). 
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Fig. 7. 2D patterns of phase matrix elements for a hexagonal prism of size parameter 62 with 

Gaussian random surface (correlation length 0.5 μm, standard deviation 0.1 μm, average facet 

dimension is 0.412 times the wavelength) obtained by beam tracing with VOF , CPF and triangulated 

incidence beam (edge length 0.125 μm). Shapes and orientations are shown on top of the figure. 

DDA results are presented in rows 2 and 4, and beam tracing results in rows 1 and 3. Results for the 

forward scattering hemisphere are shown in rows 1 and 2, and results for the backscattering 

hemisphere in rows 3 and 4. (a) P 11 , (b) –P 12 /P 11 , (c) P 22 /P 11.  

(a) 
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incidence beam (edge length 0.125 μm). Shapes and orientations are shown on top of the figure. 

DDA results are presented in rows 2 and 4, and beam tracing results in rows 1 and 3. Results for the 

forward scattering hemisphere are shown in rows 1 and 2, and results for the backscattering 

hemisphere in rows 3 and 4. (a) P 11 , (b) –P 12 /P 11 , (c) P 22 /P 11. 

 

3. Conclusions 

The (e) and (m) methods, which were proposed by Karczewski and Wolf [26] as alternatives to the 

(e,m) method for their vector diffraction approximation, link reflection from metals with external 

diffraction. This can be explained by the particular choice of boundary conditions, which assume 

(c) 
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continuity of the tangential component for either E or H field and disregard the other field 

component, which effectively is a boundary condition for a conductor, at least for the E-field. Our 

results have confirmed that only the (e,m) method is suitable for computing external diffraction and 

diffraction of externally reflected beams.  

The application of the beam tracing method to strongly absorbing particles allowed us a 

closer investigation of the external diffraction component because transmission is negligible. To 

mitigate the slightly overestimated side scattering by three-dimensional objects computed by the 

beam tracer due to applying a physical optics model for two-dimensional apertures, a particle size 

dependent ‘volume obliquity factor’ 𝑉𝑂𝐹(𝑋, 𝜃) has been introduced. This factor has been estimated 

by investigating the case of a dielectric, strongly absorbing compact hexagonal prism for three 

particle orientations at four size parameters between 20 and 100. The resulting VOF improved the 

results for phase functions and -P12/P11, indicating that the approach is broadly correct (in this initial 

investigation the dependence on azimuthal angle has been neglected). The VOF would need to be 

generalised with respect to particle shape. Introducing the VOF improved beam tracer results for 

P22/P11 as well, however there was still a noticeable deviation from the DDA results, in particular for 

small size parameters. To mitigate this overestimation of cross polarisation a size parameter 

dependent ‘cross polarisation factor’ 𝐶𝑃𝐹(𝑋, 𝜃) has been introduced. Note that the overestimation 

of side scattering without application of 𝑉𝑂𝐹(𝑋, 𝜃) will affect scattering results for transparent 

particles less, since more beam paths will contribute to the overall scattering pattern. 

This method has been applied for computing light scattering by absorbing, slightly rough 

hexagonal prisms. Correct phase relationships between beams originating from different facets are 

essential. For particle orientations where shadowing is not negligible, phase functions can be 

improved by using a new method where the incident beam is divided into sub-beams with triangular 

cross sections. The intersection points of the three beam edges with the prism define the vertices of 

a triangle, which is treated as an incident facing facet by the beam tracer. This ensures that incident 

facing but shadowed crystal facets or regions thereof do not affect the phase matrix. 2D patterns of 

P11, -P12/P11 and P22/P11 have been computed. Good results for 2D scattering patterns and 

azimuthally averaged phase function in fixed orientation have been obtained. The method captures 

much of the fine detail contained in 2D scattering patterns. This is important as speckle can be used 

for characterizing the size [6] and roughness [5] of small particles such as ice crystals. Here, we have 

studied light scattering by absorbing particles, which allowed us to separately investigate the 

external diffraction and reflection contributions. This allowed the introduction of the volume 

obliquity factor and the cross polarisation factor. It is anticipated that such factors as well as the new 

sub-beam method are also applicable to transparent particles. 
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Appendix 

.Rotation matrices have the general form [43] 

 𝐑 = [
cos𝜑 sin𝜑

− sin𝜑 cos𝜑
]          (7) 

where 𝜑 is the angle by which the initial matrix is rotated counter clockwise. 
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The amplitude diffraction matrix for the (e,m) theory is given by   

𝐃 = 𝐹
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    (8) 

where indices xyz indicate the components of the respective vector in xyz-coordinates. 
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