10 research outputs found

    The Effects of Long-Term, Low- and High-Dose Beta-Carotene Treatment in Zucker Diabetic Fatty Rats: The Role of HO-1

    No full text
    Nowadays, there is a growing interest in compounds derived from plants as potential raw materials for drug development. One of the most studied compounds is beta-carotene (BC). Several clinical studies can be found investigating the cardiovascular effects of BC, however, all these results are controversial. There is an increasing body of evidence showing that besides the well-known antioxidant properties, under strong oxidative circumstances, BC could become prooxidant as well. In this study, we investigated the effects of long-term, low- and high-dose BC treatment in ischemic/reperfused (ISA/REP) hearts isolated from Zucker diabetic fatty (ZDF) rats. The animals were treated with various daily doses of BC for 4 weeks and then hearts were isolated and subjected to 30 min of global ischemia (ISA) followed by 120 min of reperfusion (REP). Blood glucose levels were measured before, after two weeks, and at the end of the treatment. In isolated hearts, the myocardial function was registered. At the end of the reperfusion period, the infarct size (IS) and heme oxygenase-1 (HO-1) expression were measured. The results showed that a low dose of BC treatment significantly improved postischemic recovery, which was reflected in a decreased IS. Interestingly, when BC was applied at high concentrations, the observed protective effects were lost. Although BC treatment increased HO-1 expression, we did not observe a better heart function and/or decreased IS in the high-dose-treated group. Glucose tolerance tests showed a concentration-independent decrease in blood glucose levels. Our results suggest that long-term, low-dose BC treatment could be effective in the treatment of type-2-diabetes and related cardiovascular diseases

    Beta-Carotene Affects the Effects of Heme Oxygenase-1 in Isolated, Ischemic/Reperfused Rat Hearts: Potential Role of the Iron

    No full text
    Beta-carotene (BC) is a well-known antioxidant. However, increasing evidence shows that under severe oxidative conditions, BC can become pro-oxidant, an effect that may be enhanced in the presence of iron (II). In our earlier studies, we observed that despite increasing heme oxygenase-1 (HO-1) levels in the heart, the protective effects of BC have been lost when it was used at a high concentration. Since iron releases from heme as a consequence of HO-1 activity, we hypothesized that the application of an iron-chelator (IC) would reverse the lost cardiac protection associated with an elevated HO-1 level. Thus, in the present study, we investigated the effects of desferrioxiamine (DFO) in isolated, ischemic/reperfused rat hearts after long-term treatment with vehicle or high-dose (HD) BC. Vehicle or 150 mg/bw kg daily doses of BC were administered to the rats for 4 weeks, and then their hearts were removed and subjected to 30 min of global ischemia (ISA) followed by 120 min of reperfusion (REP). During the experiments, cardiac function was registered, and at the end of the REP period, infarct size (IS) and HO-1 expression were measured. The results show that DFO treatment alone during REP significantly ameliorated postischemic cardiac function and decreased IS, although HO-1 expression was not increased significantly. In hearts isolated from BC-treated rats, no cardioprotective effects, despite an elevated HO-1 level, were observed, while DFO administration after ISA resulted in a mild improvement in heart function and IS. Our results suggest that iron could have a role whether BC exerts antioxidant or pro-oxidant effects in ISA/REP-injured hearts

    Effects of Momordica charantia (Bitter Melon) on Ischemic Diabetic Myocardium

    No full text
    Objective: A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods: Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin–water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results: Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO and ZO BM-treated, versus Lean rats of total cholesterol (high density lipoprotein HDL-c + low density lipoprotein LDL-c), with an inferred increase in HDL-c/LDL-c ratio—an outcome associated with decreased risk of atherosclerotic disease. Conclusions: BM extract failed to positively affect T2DM- and cardiovascular-related outcomes at a level suggesting use as a standalone treatment. Nevertheless, the encouraging effects of BM in enhancement of cardiac function, suppression of post-ischemic/reperfused infarct size extent and capacity to modulate serum cholesterol, will likely make it useful as an adjuvant therapy for the management of T2DM and related cardiovascular diseases

    Effects of long-term, low and high dose beta-carotene treatment in Zucker diabetic fatty rats: the role of HO-1

    No full text
    Abstract: Nowadays, there is a growing interest in compounds derived from plants as potential raw materials for drug development. One of the most studied compounds is beta-carotene (BC). Several clinical studies can be found investigating the cardiovascular effects of BC, however, all these results are controversial. There is increasing body of evidence showing that beside the well-known antioxidant properties, under strong oxidative circumstances BC could become prooxidant either. In this study we investigated the effects of long term, low- and high-dose BC treatment in ischemic/reperfused (ISA/REP) hearts isolated from zucker diabetic fatty (ZDF) rats. The animals were treated with various daily doses of BC for 4 weeks, and then hearts were isolated and subjected to 30 min of global ischemia (ISA) followed by 120 min of reperfusion (REP). Blood glucose levels were measured before, after two weeks and at the end of the treatment. In isolated hearts myocardial function was registered. At the end of reperfusion period infarctract size (IS) and heme oxygenase-1 (HO-1) expression were measured. The results show that low dose of BC treatment significantly improved postischemic recovery, which was reflected in a decreased IS. Interestingly, when BC was applied at high concentration, the observed protective effects were lost. Although, BC treatment increased HO-1 expression, we did not observe a better heart function and/or decreased IS in the high dose treated group. The glucose tolerance test showed concentration independent decrease in blood glucose levels. Our results suggest that long-term, low-dose BC treatment could be effective in the treatment of type-2-diabetes and related cardiovascular disease

    Antioxidant Properties and Oxidative Transformation of Different Chromone Derivatives

    No full text
    Nowadays, there is an increase in the application of natural products for the prevention of different disorders or adjuvant substances next to pharmacological treatment. Phytochemicals include different chromone derivatives, which possess a wide spectrum of biological activity. The aim of the present study was the investigation of the antioxidant activity, cytotoxicity and oxidative transformation of nine chromone derivatives. First, we investigated the radical scavenging activity (ABTS), the oxygen radical absorption capacity (ORAC) and the ferric reducing antioxidant power (FRAP) of the investigated molecules. The cytotoxic effects of the compounds were tested on H9c2 cell cultures by the MTT assay. Each compound showed a significant ORAC value compared to the reference. However, the compound 865 possess significantly higher FRAP and ABTS activity in comparison with the reference and other tested molecules, respectively. Based on these assays, the compound 865 was selected for further analysis. In these experiments, we investigated the oxidative metabolism of the compound in vitro. The molecule was oxidized by the Fenton reaction, artificial porphyrin and electrochemistry; then, the formed products were identified by mass spectrometry. Four possible metabolites were detected. The results revealed the compound 865 to possess good antioxidant properties and to be stable metabolically; hence, it is worth investigating its effects in vivo

    Synthesis, in Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: The Possible Role of the Phenyl-N,N-Dimethylamino Group

    No full text
    Six new flavonols (6a–f) were synthesized with Claisen–Schmidt and Suzuki reactions and they were fully characterized by spectroscopic methods. In order to evaluate their antioxidant activities, their oxygen radical absorption capacity and ferric reducing antioxidant power were measured, along with their free radical scavenging activity against 2,20 -azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazylradicals. In addition, their cytotoxicity on H9c2 cardiomyoblast cells was also assessed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Compounds bearing the phenyl-N,N-dimethylamino group (6a, 6c, and 6e) exhibited promising antioxidant potency and did not have any cytotoxic effect. After a consideration of these data, the oxidative transformation of the 6c compound was investigated in vitro with a chemical Fenton reaction and the identification of the formed oxidation products was performed by mass spectrometry. Two potential metabolites were detected. Based on these results, compound 6c can be a model compound for future developments. Overall, this work has proved the involvement of the phenyl-N,N-dimethylamino group in the antioxidant activity of flavonols
    corecore