477 research outputs found

    First principles calculations of oxygen adsorption on the UN (001) surface

    Full text link
    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized atomic orbitals.Comment: 9 page

    Pressure dependence of the low-frequency dielectric constant of KNbO_3

    Full text link
    The effect of pressure on the low-frequency dielectric constant, ϵ0\epsilon_0, of single crystals of KNbO_3 is investigated by means of capacitance measurements. The dielectric constant increases with pressure up to 22.5 kbar, where it exhibits a large value (ϵ0\epsilon_0 = 5000), and then decreases. This change in its behaviour is related to a phase transition induced by pressure. On decompression, the samples do not revert back to the ambient pressure phase.Comment: 4 pages latex, 1 postscript file include

    Origin of pressure-induced insulator-to-metal transition in the van der Waals compound FePS3 from first-principles calculations

    Get PDF
    The authors acknowledge the assistance of the University Computer Center of Saint‐Petersburg State University in the accomplishment of high‐performance computations. A.K. is grateful to the Latvian Council of Science project no. lzp‐2018/2‐0353 for financial support.Pressure-induced insulator-to-metal transition (IMT) has been studied in the van der Waals compound iron thiophosphate (FePS3) using first-principles calculations within the periodic linear combination of atomic orbitals method with hybrid Hartree–Fock-DFT B3LYP functional. Our calculations reproduce correctly the IMT at ∼15 GPa, which is accompanied by a reduction of the unit cell volume and of the vdW gap. We found from the detailed analysis of the projected density of states that the 3p states of phosphorus atoms contribute significantly at the bottom of the conduction band. As a result, the collapse of the band gap occurs due to changes in the electronic structure of FePS3 induced by relative displacements of phosphorus or sulfur atoms along the c-axis direction under pressure.Latvian Council of Science project no. lzp‐2018/2‐0353; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    First principles evaluation on photocatalytic suitability of 2H structured and [0001] oriented WS2 nanosheets and nanotubes

    Get PDF
    This study was supported by the EC ERA.Net RUS Plus Project No. 237 WATERSPLIT. R.E. acknowledges the financial support provided by the Russian Foundation for Basic Research (grant N 17-03-00130a) and High Performance Computer Center of St. Petersburg University for the assistance. The authors are indebted to D. Bocharov, O. Lisovski and E. Spohr for stimulating discussions.Pristine WS2 multilayer nanosheets (NSs), which thickness h NS varies from 1 to 12 monolayers (MLs), as well as single- and multi-walled nanotubes (SW and MW NTs) of different chirality, which diameter d NT exceeds 1.9 nm, display photocatalytic suitability to split H2O molecules. Obviously, such a phenomenon can occur since the band gap of these nanostructures corresponds to the energy range of visible light between the red and violet edges of spectrum (1.55 eV < Δϵgap < 2.65 eV). For all the studied WS2 NSs and NTs, the levels of the top of the valence band and the bottom of the conduction band must be properly aligned relatively to H2O oxidation and reduction potentials separated by 1.23 eV: ϵ VB < ϵO2/H2O < ϵH+/H2 < ϵ CB. The values of Δϵgap decrease with growth of h NS and increase with enlargement of dNT. 1 ML nanosheet can be considered as a limit of infinite SW NT thickness growth (d NT→∞), which band gap increases up to ∼2.65 eV. First principles calculations have been performed using the hybrid DFT-HF method (HSE06 Hamiltonian) adapted for 2H WS2 bulk. The highest solar energy conversion efficiency (15-18%) expected at Δϵgap = 2.0-2.2 eV (yellow-green range) has been found for 2 ML thick (stoichiometric) WS2 (0001) NS as well as WS2 NTs with diameters 2.7-3.2 nm (irrespectively on morphology and chirality indices n of nanotubes). Moreover, unlike discrete variation of hNS magnitudes, tuning of d NT values provides much higher energy resolution.Russian Foundation for Basic Research N 17-03-00130a; European Commission EC 237 WATERSPLIT; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    First-principles comparative study of perfect and defective CsPbX3 (X = Br, I) crystals

    Get PDF
    We thank R. Merkle for numerous fruitful discussions and G. Siegle for experimental assistance. This study was partly supported by the M-ERA-NET project SunToChem (EK). Calculations were performed using computational facilities of St. Petersburg State University and Max Planck Institute for Solid State Research. Open Access funding provided by the Max Planck Society.First principles Density Functional Theory (DFT) hybrid functional PBESOL0 calculations of the atomic and electronic structure of perfect CsPbI3, CsPbBr3 and CsPbCl3 crystals, as well as defective CsPbI3 and CsPbBr3 crystals are performed and discussed. For the perfect structure, decomposition energy into binary compounds (CsX and PbX2) is calculated, and a stability trend of the form CsPbBr3 > CsPbI3 > CsPbCl3 is found. In addition, calculations of the temperature-dependent heat capacity are performed and shown to be in good agreement with experimental data. As far as the defect structure is considered, it is shown that interstitial halide atoms in CsPbBr3 do not tend to form di-halide dumbbells Br2- while such dimers are energetically favoured in CsPbI3, analogous to the well-known H-centers in alkali halides. In the case of CsPbBr3, a loose trimer configuration (Br32-) seems to be energetically preferred. The effects of crystalline symmetry and covalency are discussed, alongside the role of defects in recombination processes.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²https://pubs.rsc.org/en/content/articlepdf/2020/cp/c9cp06322

    First-principles calculations of iodine-related point defects in CsPbI3

    Get PDF
    Many thanks to A. Lushchik, A. Popov and R. Merkle for numerous fruitful discussions. This study was partly supported by the Latvian Council for Science (grant LZP-2018/1-0147 to EK). R.A.E acknowledges the assistance of the University Computer Center of Saint-Petersburg State University for high-performance computations.We present here first principles hybrid functional calculations of the atomic and electronic structure of several iodine-related point defects in CsPbI3, a material relevant for photovoltaic applications. We show that the presence of neutral interstitial I atoms or electron holes leads to the formation of di-halide dumbbells of I2− (analogous to the well-known situation in alkali halides). Their formation and one-electron energies in the band gap are determined. The formation energy of the Frenkel defect pair (I vacancies and neutral interstitial I atoms) is found to be ∼1 eV, and as such is smaller than the band gap. We conclude that both iodine dumbbells and iodine vacancies could be, in principle, easily produced by interband optical excitation.Latvian Council for Science (grant LZP-2018/1-0147 to EK); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Simulation of Young's moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles and molecular mechanical calculations

    Get PDF
    The authors thank A Gulans, B Polyakov and S Vlassov for stimulating discussions. This study has been supported by the ERA.Net RUS Plus project No. 237 Watersplit. AB, RE and SL acknowledge the financial support by the Russian Foundation for Basic Research (Grant No. 17-03-00130-a) and the assistance of the Saint Petersburg State University Computer Center in the accomplishment of high-performance computations.Morphologically reproducible wurtzite-structured zinc oxide nanowires (ZnO NWs) can be synthesized by different methods. Since ZnO NWs have been found to possess piezoelectricity, a comprehensive study of their mechanical properties, e.g. deformations caused by external compression or stretching, is one of the actual tasks of this paper. We have calculated wurtzite-structured [0 0 0 1]-oriented ZnO NWs whose diameters have been varied within 1–5 nm and 1–20 nm ranges when using either ab initio (hybrid DFT-LCAO) or force-field (molecular mechanical) methods, respectively (the minimum diameter dNW of experimentally synthesized NWs has been estimated on average to be ~20 nm). When using both chosen calculation approaches, the values of Young's moduli determined for the mentioned ranges of NW diameters have been found to be qualitatively compatible (168–169 GPa for 5 nm NW thickness), whereas results of molecular mechanical simulations on YNW for 20 nm-thick NWs (160–162 GPa) have been qualitatively comparable with those experimentally measured along the [0 0 0 1] direction of NW loading. In all the cases, a gradual increase of the NW diameter has resulted in an asymptotic decrease of Young's modulus consequently approaching that (Yb) of wurtzite-structured ZnO bulk along its [0 0 0 1] axis. The novelty of this study is that we combine the computation methods of quantum chemistry and molecular mechanics, while the majority of previous studies with the same aim have focused on the application of different classical molecular dynamical methods.ERA.Net RUS Plus project No. 237 Watersplit; Russian Foundation for Basic Research (Grant No. 17-03-00130-a); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Chemisorption of a molecular oxygen on the UN (001) surface: ab initio calculations

    Full text link
    The results of DFT GGA calculations on oxygen molecules adsorbed upon the (001) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air

    First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts

    Get PDF
    This study was supported by the EC ERA.Net RUS Plus project No. 237 WATERSPLIT as well as Russian Basic Research Foundation No. 16-53-76019. S.K. and E.S. furthermore gratefully acknowledge computing time granted by the Center for Computational Sciences and Simulation (CCSS) of the Universitaẗ Duisburg-Essen and the supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1 FUGG) provided by the Zentrum für Informations-und Mediendienste (ZIM). E.S. is also grateful for support by the Cluster of Excellence RESOLV (EXC1069) funded by the Deutsche Forschungsgemeinschaft.One-dimensional tungsten disulfide (WS2) single-walled nanotubes (NTs) with either achiral, i.e., armchair (n, n) and zigzag-type (n, 0), or chiral (2n, n) configuration with diameters dNT > 1.9 nm have been found to be suitable for photocatalytic applications, since their band gaps correspond to the frequency range of visible light between red and violet (1.5 eV 1.9 nm, the condition ϵVB < ϵO2/H2O < ϵH2/H2O < ϵCB is fulfilled. The values of ϵVB and ϵCB have been found to depend only on the diameter and not on the chirality index of the nanotube. The reported structural and electronic properties have been obtained from either hybrid density functional theory and Hartree-Fock linear combination of atomic orbitals calculations (using the HSE06 functional) or the linear augmented cylindrical waves density functional theory method. In addition to single-walled NTs, we have investigated a number of achiral double-walled (m, m)at(n, n) and (m, 0)at(n, 0) as well as triple-walled (l, l)at(m, m)at(n, n) and (l, 0)at(m, 0)at(n, 0) nanotubes. All multiwalled nanotubes show a common dependence of their band gap on the diameter of the inner nanotube, independent of chirality index and number of walls. This behavior of WS2 NTs allows the exploitation of the entire range of the visible spectrum by suitably tuning the band gap.Deutsche Forschungsgemeinschaft INST 20876/243-1 FUGG,INST 20876/209-1 FUGG,EXC1069; Russian Foundation for Basic Research 16-53-76019; EC ERA.Net RUS Plus project No. 237 WATERSPLIT; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Synchrotron-based far-infrared spectroscopy of nickel tungstate

    No full text
    Monoclinic antiferromagnetic NiW ₄ was studied by far-infrared (30–600 cm−¹) absorption spectroscopy in the temperature range of 5–300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO₄ and ZnWO₄ tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO₄ and CoWO₄ below their Neel temperatures down to 5 K
    corecore