45,627 research outputs found

    Method and apparatus for mapping the distribution of chemical elements in an extended medium

    Get PDF
    Contaminants in an extended medium such as the wall of a building are mapped by locating neutron excitation source on one side of the wall and a gamma ray spectrometer, including a gamma ray detector on the opposite side of the wall facing the excitation source. The source and detector are moved in unison in discrete steps over opposing wall surfaces so as to determine the chemical composition of the elements in a hemispheric region of the wall adjacent the detector with the radius of the region being substantially that of the mean free path distance of gamma rays emitted from elements interacting with neutrons on the detector side of the wall. The source and detector are reversed for relatively thick walls for mapping the distribution of elements on the other side of the wall thickness. The output of the detector is fed to a multichannel pulse height analyzer where the intensity of the various gamma ray spectral lines are indicated relative to a dominant constituent element such as silicon. Resolution of anomalies such as the presence of voids and/or determining the bulk density of the medium is achieved by substituting a gamma ray source technique is also applied to metal alloys, such as iron alloys, in either the solid or molten state

    Distributed feedback lasers

    Get PDF
    A ridge waveguide distributed feedback laser was developed in InGaAsP. These devices have demonstrated CW output powers over 7 mW with threshold currents as low as 60 mA at 25 C. Measurements of the frequency response of these devices show a 3 dB bandwidth of about 2 GHz, which may be limited by the mount. The best devices have a single mode spectra over the entire temperature range tested with a side mode suppression of about 20 dB in both CW and pulsed modes. The design of this device, including detailed modeling of the ridge guide structure, effective index calculations, and a discussion of the grating configuration are presented. Also, the fabrication of the devices is presented in some detail, especially the fabrication of and subsequent growth over the grating. In addition, a high frequency fiber pigtailed package was designed and tested, which is a suitable prototype for a commercial package

    Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver

    Get PDF
    [Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered, an 18-m long corridor and a 42-m2 office. The modeling technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions

    Adaptive high-order finite element solution of transient elastohydrodynamic lubrication problems

    Get PDF
    This article presents a new numerical method to solve transient line contact elastohydrodynamic lubrication (EHL) problems. A high-order discontinuous Galerkin (DG) finite element method is used for the spatial discretization, and the standard Crank-Nicolson method is employed to approximate the time derivative. An h-adaptivity method is used for grid adaptation with the time-stepping, and the penalty method is employed to handle the cavitation condition. The roughness model employed here is a simple indentation, which is located on the upper surface. Numerical results are presented comparing the DG method to standard finite difference (FD) techniques. It is shown that micro-EHL features are captured with far fewer degrees of freedom than when using low-order FD methods

    Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

    Get PDF
    There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2. Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz. Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis. The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz

    The mass of dwarf spheroidal galaxies and the missing satellite problem

    Full text link
    We present the results from a suite of N-body simulations of the tidal stripping of two-component dwarf galaxies comprising some stars and dark matter. We show that recent kinematic data from the local group dwarf spheroidal (dSph) galaxies suggests that dSph galaxies must be sufficiently massive (109−101010^9 - 10^{10}M⊙_\odot) that tidal stripping is of little importance for the stars. We discuss the implications of these massive dSph galaxies for cosmology and galaxy formation.Comment: 4 pages, 1 figure, to appear in the proceedings of the IAUC198 "Near-Field Cosmology with Dwarf Elliptical Galaxies", H. Jerjen & B. Binggeli (eds.). Comments welcom

    The tidal stripping of satellites

    Full text link
    We present an improved analytic calculation for the tidal radius of satellites and test our results against N-body simulations. The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and {\it the orbit of the star within the satellite}. We demonstrate that this last point is critical and suggest using {\it three tidal radii} to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically. Over short times (\simlt 1-2 Gyrs ∌1\sim 1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.Comment: 10 pages, 5 figures. Final version accepted for publication in MNRAS. Some new fully analytic tidal radii have been added for power law density profiles (including the isothermal sphere) and some split power law

    In situ XRF and gamma ray spectrometer for Mars sample return mission

    Get PDF
    A combined in situ X-ray fluorescence (XRF) and passive gamma ray spectrometer instrument is proposed for the chemical elemental analysis of various Martian surfaces and samples. The combined instrument can be carried on board a rover. The passive gamma ray or the neutron excited gamma ray system would be used to determine the elemental composition of the Martian surface while the rover is in motion. The XRF system would be used to perform analysis either on the Martian surface or on collected samples when the rover is stationary. The latter function is important both in cataloging the collected samples and in the selection of samples to be returned to earth. For both systems, data accumulation time would be on the order of 30 minutes. No sample preparation would be necessary
    • 

    corecore