7,086 research outputs found

    Spontaneous Jamming in One-Dimensional Systems

    Full text link
    We study the phenomenon of jamming in driven diffusive systems. We introduce a simple microscopic model in which jamming of a conserved driven species is mediated by the presence of a non-conserved quantity, causing an effective long range interaction of the driven species. We study the model analytically and numerically, providing strong evidence that jamming occurs; however, this proceeds via a strict phase transition (with spontaneous symmetry breaking) only in a prescribed limit. Outside this limit, the nearby transition (characterised by an essential singularity) induces sharp crossovers and transient coarsening phenomena. We discuss the relevance of the model to two physical situations: the clustering of buses, and the clogging of a suspension forced along a pipe.Comment: 8 pages, 4 figures, uses epsfig. Submitted to Europhysics Letter

    From Molecular Cores to Planet-forming Disks with SIRTF

    Full text link
    The SIRTF mission and the Legacy programs will provide coherent data bases for extra-galactic and Galactic science that will rapidly become available to researchers through a public archive. The capabilities of SIRTF and the six legacy programs are described briefly. Then the cores to disks (c2d) program is described in more detail. The c2d program will use all three SIRTF instruments (IRAC, MIPS, and IRS) to observe sources from molecular cores to protoplanetary disks, with a wide range of cloud masses, stellar masses, and star-forming environments. The SIRTF data will stimulate many follow-up studies, both with SIRTF and with other instruments.Comment: 6 pages, from Fourth Cologne-Bonn-Zermatt-Symposium, The Dense Interstellar Matter in Galaxie

    Infrared spectroscopy of Nova Cassiopeiae 1993 (V705 Cas). IV. A closer look at the dust

    Full text link
    Nova Cassiopeiae 1993 (V705 Cas) was an archetypical dust-forming nova. It displayed a deep minimum in the visual light curve, and spectroscopic evidence for carbon, hydrocarbon and silicate dust. We report the results of fitting the infrared spectral energy distribution with the DUSTY code, which we use to determine the properties and geometry of the emitting dust. The emission is well described as originating in a thin shell whose dust has a carbon:silicate ratio of ~2:1 by number (1.26:1 by mass) and a relatively flat size distribution. The 9.7micron and 18micron silicate features are consistent with freshly-condensed dust and, while the lower limit to the grain size distribution is not well constrained, the largest grains have dimensions \~0.06micron; unless the grains in V705 Cas were anomalously small, the sizes of grains produced in nova eruptions may previously have been overestimated in novae with optically thick dust shells. Laboratory work by Grishko & Duley may provide clues to the apparently unique nature of nova UIR features.Comment: 11 pages, 9 fugure

    Oxidation of tertiary amine-derivatized surfaces to control protein adhesion

    Get PDF
    Selective oxidation of omega-tertiary amine self-assembled thiol monolayers to tertiary amine N-oxides is shown to transform the adhesion of model proteins lysozyme and fibrinogen upon them. Efficient preparation of both secondary and tertiary linker amides as judged by X-ray photoelectron spectroscopy (XPS) and water droplet contact angle was achieved with an improved amide bond formation on gold quartz crystal microbalance (QCM) sensors using 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl hexafluorophosphate methanaminium uronium (HATU). Oxidation with hydrogen peroxide was similarly assessed, and adhesion of lysozyme and fibrinogen from phosphate buffered saline was then assayed by QCM and imaged by AFM. Tertiary amine-functionalized sensors adsorbed multilayers of aggregated lysozyme, whereas tertiary amine N-oxides and triethylene glycol-terminated monolayers are consistent with small protein aggregates. The surface containing a dimethylamine N-oxide headgroup and ethyl secondary amide linker showed the largest difference in adsorption of both proteins. Oxidation of tertiary amine decorated surfaces therefore holds the potential for selective deposition of proteins and cells through masking and other patterning techniques

    Pherotype polymorphism in Streptococcus pneumoniae has no obvious effects on population structure and recombination

    Get PDF
    Natural transformation in the Gram-positive pathogen Streptococcus pneumoniae occurs when cells become “competent”, a state that is induced in response to high extracellular concentrations of a secreted peptide signal called CSP (Competence Stimulating Peptide) encoded by the comC locus. Two main CSP signal types (pherotypes) are known to dominate the pherotype diversity across strains. Using 4,089 fully sequenced pneumococcal genomes, we confirm that pneumococcal populations are highly genetically structured and that there is significant variation among diverged populations in pherotype frequencies; most carry only a single pherotype. Moreover, we find that the relative frequencies of the two dominant pherotypes significantly vary within a small range across geographical sites. It has been variously proposed that pherotypes either promote genetic exchange among cells expressing the same pherotype, or conversely that they promote recombination between strains bearing different pherotypes. We attempt to distinguish these hypotheses using a bioinformatics approach by estimating recombination frequencies within and between pherotypes across 4,089 full genomes. Despite underlying population structure, we observe extensive recombination between populations; additionally, we found significantly higher (although marginal) rates of genetic exchange between strains expressing different pherotypes than among isolates carrying the same pherotype. Our results indicate that pherotypes do not restrict, and may even slightly facilitate, recombination between strains; however, these marginal effects suggest the more likely possibility that the cause of CSP polymorphism lies outside of its effects on transformation. Our results suggest that the CSP balanced polymorphism does not causally underlie population differentiation. Therefore, when strains carrying different pherotypes encounter one another during co-colonization, genetic exchange can occur without restriction

    Diversity of multi-drug resistant Acinetobacter baumannii population in a major hospital in Kuwait

    Get PDF
    Acinetobacter baumannii is one of the most important opportunistic pathogens that causes serious health care associated complications in critically ill patients. In the current study we report on the diversity of the clinical multi-drug resistant (MDR) A. baumannii in Kuwait by molecular characterization. One hundred A. baumannii were isolated from one of the largest governmental hospitals in Kuwait. Following the identification of the isolates by molecular methods, the amplified blaOXA-51-like gene product of one isolate (KO-12) recovered from blood showed the insertion of the ISAba19 at position 379 in blaOXA-78. Of the 33 MDR isolates, 28 (85%) contained blaOXA-23, 2 (6%) blaOXA-24 and 6 (18%) blaPER-1 gene. We did not detect blaOXA-58, blaV IM, blaIMP, blaGES, blaV EB, and blaNDM genes in any of the tested isolates. In three blaPER-1 positive isolates the genetic environment of blaPER-1 consisted of two copies of ISPa12 (tnpiA1) surrounding the blaPER-1 gene on a highly stable plasmid of ca. 140-kb. Multilocus-sequence typing (MLST) analysis of the 33 A. baumannii isolates identified 20 different STs, of which six (ST-607, ST-608, ST-609, ST-610, ST-611, and ST-612) were novel. Emerging STs such as ST15 (identified for the first time in the Middle East), ST78 and ST25 were also detected. The predominant clonal complex was CC2. Pulsed-field gel electrophoresis and MLST defined the MDR isolates as multi-clonal with diverse lineages. Our results lead us to believe that A. baumannii is diverse in clonal origins and/or is undergoing clonal expansion continuously while multiple lineages of MDR A. baumannii circulate in hospital ward simultaneously

    Accelerating Online Reinforcement Learning via Supervisory Safety Systems

    Full text link
    Deep reinforcement learning (DRL) is a promising method to learn control policies for robots only from demonstration and experience. To cover the whole dynamic behaviour of the robot, the DRL training is an active exploration process typically derived in simulation environments. Although this simulation training is cheap and fast, applying DRL algorithms to real-world settings is difficult. If agents are trained until they perform safely in simulation, transferring them to physical systems is difficult due to the sim-to-real gap caused by the difference between the simulation dynamics and the physical robot. In this paper, we present a method of online training a DRL agent to drive autonomously on a physical vehicle by using a model-based safety supervisor. Our solution uses a supervisory system to check if the action selected by the agent is safe or unsafe and ensure that a safe action is always implemented on the vehicle. With this, we can bypass the sim-to-real problem while training the DRL algorithm safely, quickly, and efficiently. We provide a variety of real-world experiments where we train online a small-scale, physical vehicle to drive autonomously with no prior simulation training. The evaluation results show that our method trains agents with improved sample efficiency while never crashing, and the trained agents demonstrate better driving performance than those trained in simulation.Comment: 7 Pages, 10 Figures, 1 Table. Submitted to 2023 IEEE International Conference on Robotics and Automation (ICRA 2023

    Pherotype Polymorphism in Streptococcus pneumoniae Has No Obvious Effects on Population Structure and Recombination.

    Get PDF
    Natural transformation in the Gram-positive pathogen Streptococcus pneumoniae occurs when cells become "competent," a state that is induced in response to high extracellular concentrations of a secreted peptide signal called competence stimulating peptide (CSP) encoded by the comC locus. Two main CSP signal types (pherotypes) are known to dominate the pherotype diversity across strains. Using 4,089 fully sequenced pneumococcal genomes, we confirm that pneumococcal populations are highly genetically structured and that there is significant variation among diverged populations in pherotype frequencies; most carry only a single pherotype. Moreover, we find that the relative frequencies of the two dominant pherotypes significantly vary within a small range across geographical sites. It has been variously proposed that pherotypes either promote genetic exchange among cells expressing the same pherotype, or conversely that they promote recombination between strains bearing different pherotypes. We attempt to distinguish these hypotheses using a bioinformatics approach by estimating recombination frequencies within and between pherotypes across 4,089 full genomes. Despite underlying population structure, we observe extensive recombination between populations; additionally, we found significantly higher (although marginal) rates of genetic exchange between strains expressing different pherotypes than among isolates carrying the same pherotype. Our results indicate that pherotypes do not restrict, and may even slightly facilitate, recombination between strains; however, these marginal effects suggest the more likely possibility that the cause of CSP polymorphism lies outside of its effects on transformation. Our results suggest that the CSP balanced polymorphism does not causally underlie population differentiation. Therefore, when strains carrying different pherotypes encounter one another during cocolonization, genetic exchange can occur without restriction
    • …
    corecore