13 research outputs found

    An Optimized Bagging Ensemble Learning Approach Using BESTrees for Predicting Students’ Performance

    Get PDF
    Every academic institution\u27s goal is to identify students who require additional assistance and take appropriate actions to improve their performance. As such, various research studies have focused on developing prediction models that can detect correlated patterns influencing students\u27 performance, dropout, collaboration, and engagement. Among the influential predictive models available, the bagging ensemble has captured the interest of researchers seeking to improve prediction accuracy over single classifiers. However, prior work in this area has focused mainly on selecting single classifiers as the base classifier of the bagging ensemble, with little to no further optimization of the proposed framework. This study aims to fill this gap by providing a bagging ensemble framework to optimize its hyperparameters and achieve improved prediction accuracy. The proposed model used the Weka BESTrees data mining tool and Math language course student dataset from UCI Machine Learning Repository. Based on the experiments performed, the proposed bagging optimization technique can effectively increase the accuracy of a traditional bagging ensemble method. It reveals further that the proposed BESTrees framework can achieve an optimized performance when trained with the appropriate hyperparameters and hill climb metrics

    A Hybrid Machine Learning Framework for Predicting Students’ Performance in Virtual Learning Environment

    Get PDF
    Virtual Learning Environments (VLE), such as Moodle and Blackboard, store vast data to help identify students\u27 performance and engagement. As a result, researchers have been focusing their efforts on assisting educational institutions in providing machine learning models to predict at-risk students and improve their performance. However, it requires an efficient approach to construct a model that can ultimately provide accurate predictions. Consequently, this study proposes a hybrid machine learning framework to predict students\u27 performance using eight classification algorithms and three ensemble methods (Bagging, Boosting, Voting) to determine the best-performing predictive model. In addition, this study used filter-based and wrapper-based feature selection techniques to select the best features of the dataset related to students\u27 performance. The obtained results reveal that the ensemble methods recorded higher predictive accuracy when compared to single classifiers. Furthermore, the accuracy of the models improved due to the feature selection techniques utilized in this study

    An approach for improved students’ performance prediction using homogeneous and heterogeneous ensemble methods

    Get PDF
    Web-based learning technologies of educational institutions store a massive amount of interaction data which can be helpful to predict students’ performance through the aid of machine learning algorithms. With this, various researchers focused on studying ensemble learning methods as it is known to improve the predictive accuracy of traditional classification algorithms. This study proposed an approach for enhancing the performance prediction of different single classification algorithms by using them as base classifiers of homogeneous ensembles (bagging and boosting) and heterogeneous ensembles (voting and stacking). The model utilized various single classifiers such as multilayer perceptron or neural networks (NN), random forest (RF), naïve Bayes (NB), J48, JRip, OneR, logistic regression (LR), k-nearest neighbor (KNN), and support vector machine (SVM) to determine the base classifiers of the ensembles. In addition, the study made use of the University of California Irvine (UCI) open-access student dataset to predict students’ performance. The comparative analysis of the model’s accuracy showed that the best-performing single classifier’s accuracy increased further from 93.10% to 93.68% when used as a base classifier of a voting ensemble method. Moreover, results in this study showed that voting heterogeneous ensemble performed slightly better than bagging and boosting homogeneous ensemble methods

    An approach for improved students’ performance prediction using homogeneous and heterogeneous ensemble methods

    Get PDF
    Web-based learning technologies of educational institutions store a massive amount of interaction data which can be helpful to predict students’ performance through the aid of machine learning algorithms. With this, various researchers focused on studying ensemble learning methods as it is known to improve the predictive accuracy of traditional classification algorithms. This study proposed an approach for enhancing the performance prediction of different single classification algorithms by using them as base classifiers of homogeneous ensembles (bagging and boosting) and heterogeneous ensembles (voting and stacking). The model utilized various single classifiers such as multilayer perceptron or neural networks (NN), random forest (RF), naïve Bayes (NB), J48, JRip, OneR, logistic regression (LR), k-nearest neighbor (KNN), and support vector machine (SVM) to determine the base classifiers of the ensembles. In addition, the study made use of the University of California Irvine (UCI) open-access student dataset to predict students’ performance. The comparative analysis of the model’s accuracy showed that the best-performing single classifier’s accuracy increased further from 93.10% to 93.68% when used as a base classifier of a voting ensemble method. Moreover, results in this study showed that voting heterogeneous ensemble performed slightly better than bagging and boosting homogeneous ensemble methods

    Towards Designing a Knowledge Sharing System for Higher Learning Institutions in the UAE Based on the Social Feature Framework

    Get PDF
    Numerous ICT instruments, such as communication tools, social media platforms, and collaborative software, bolster and facilitate knowledge sharing activities. Determining the vital success factors for knowledge sharing within its unique context is argued to be essential before implementing it. Therefore, it is imperative to define domain-specific critical success factors when envisioning the design of a knowledge sharing system. This research paper introduces the blueprint for an Academic Knowledge Sharing System (AKSS), rooted in an essential success framework tailored to knowledge sharing to deploy within an academic institution. In this regard, an extensive exploration of the relevant literature led to the formulation of the research hypothesis that guided the construction of a questionnaire targeting university students through the online platform Pollfish, utilizing a quantitative approach to investigate, while the data collected was analyzed using SPSS version 22. The study unveils critical factors, including encouragement, acknowledgment, a reward system, fostering a knowledge sharing culture, and leading by example, contributing to developing the knowledge sharing framework. Furthermore, the study illustrates how this framework seamlessly integrated into the design, implementation, and execution of the Academic Knowledge Sharing System (AKSS)

    An Optimized Bagging Ensemble Learning Approach Using BESTrees for Predicting Students’ Performance

    No full text
    Every academic institution's goal is to identify students who require additional assistance and take appropriate actions to improve their performance. As such, various research studies have focused on developing prediction models that can detect correlated patterns influencing students' performance, dropout, collaboration, and engagement. Among the influential predictive models available, the bagging ensemble has captured the interest of researchers seeking to improve prediction accuracy over single classifiers. However, prior work in this area has focused mainly on selecting single classifiers as the base classifier of the bagging ensemble, with little to no further optimization of the proposed framework. This study aims to fill this gap by providing a bagging ensemble framework to optimize its hyperparameters and achieve improved prediction accuracy. The proposed model used the Weka BESTrees data mining tool and Math language course student dataset from UCI Machine Learning Repository. Based on the experiments performed, the proposed bagging optimization technique can effectively increase the accuracy of a traditional bagging ensemble method. It reveals further that the proposed BESTrees framework can achieve an optimized performance when trained with the appropriate hyperparameters and hill climb metrics. &nbsp

    A Hybrid Machine Learning Framework for Predicting Students’ Performance in Virtual Learning Environment

    Get PDF
    Virtual Learning Environments (VLE), such as Moodle and Blackboard, store vast data to help identify students' performance and engagement. As a result, researchers have been focusing their efforts on assisting educational institutions in providing machine learning models to predict at-risk students and improve their performance. However, it requires an efficient approach to construct a model that can ultimately provide accurate predictions. Consequently, this study proposes a hybrid machine learning framework to predict students' performance using eight classification algorithms and three ensemble methods (Bagging, Boosting, Voting) to determine the best-performing predictive model. In addition, this study used filter-based and wrapper-based feature selection techniques to select the best features of the dataset related to students' performance. The obtained results reveal that the ensemble methods recorded higher predictive accuracy when compared to single classifiers. Furthermore, the accuracy of the models improved due to the feature selection techniques utilized in this study
    corecore