35 research outputs found

    Lesion Preparation with Orbital Atherectomy

    Get PDF
    Despite significant improvements in stent design, severe coronary calcification continues to impede adequate stent expansion and is associated with worse clinical outcomes. Angiography is limited in its ability to detect and comprehensively characterise calcified plaque. Intravascular imaging provides information on lesion morphology guiding appropriate treatment strategies. Orbital atherectomy allows for lesion preparation of severely calcified plaque prior to stent implantation. Utilising a unique mechanism of action incorporating centrifugal forces, a standard 1.25 mm eccentrically mounted and diamond-coated burr orbits bi-directionally to ablate calcified plaque. Lesion preparation with orbital atherectomy allows for modification of calcified plaque to facilitate stent expansion

    Procedural and long-term ischemic outcomes of tight subtotal occlusions treated with orbital atherectomy: An ORBIT II subanalysis

    Get PDF
    Background/purpose Orbital atherectomy is an effective treatment strategy to modify severely calcified coronary lesions prior to stent placement. Traversing a severely calcified subtotal occlusion with the crown may be more challenging compared with a less severely stenotic lesion. The purpose of this ORBIT II subanalysis was to evaluate outcomes post-orbital atherectomy (OA) treatment of lesions with ≥95% stenosis. Methods/materials ORBIT II, a single-arm, prospective, multicenter trial, enrolled 443 subjects with severely calcified coronary lesions. Patients with chronic total occlusions were excluded from the trial. Subjects with the OA device activated were stratified based on pre-procedure percent stenosis: ≥95% stenosis (N = 91) and <95% stenosis (N = 341). Procedural success and 3-year major adverse cardiac event (MACE) rates were compared. Results The severe angiographic complications rates were 6.6% and 6.7% in the ≥95% and <95% stenosis groups, respectively. There was no significant difference in procedural success (94.5% vs. 88.3%, p = 0.120). 3-year MACE rates were similar (27.1% vs. 22.5%, p = 0.548), as were the rates of cardiac death (5.7% vs. 7.1%, p = 0.665) and MI (7.9% vs. 12.1%, p = 0.244). The TVR rate was higher in the ≥95% stenosis group (19.1% vs. 7.5%, p = 0.004). Conclusions In ORBIT II, OA treatment of lesions with ≥95% stenosis resulted in a high rate of procedural success. Although the 3-year revascularization rate was higher in the ≥95% stenosis group, it is not unexpected given the challenge of treating such complex lesions. The results of this analysis suggest that OA may be a reasonable treatment strategy for tight, severely calcified subtotal occlusions. Summary The purpose of this ORBIT II subanalysis was to evaluate outcomes post-orbital atherectomy (OA) treatment of lesions with ≥95% stenosis. In ORBIT II, OA treatment of lesions with ≥95% stenosis resulted in a high rate of procedural success. Although the 3-year revascularization rate was higher in the ≥95% stenosis group, it is not unexpected given the challenge of treating such complex lesions. The results of this analysis suggest that OA may be a reasonable treatment strategy for tight, severely calcified subtotal occlusions

    Calcified Lesion Assessment and Intervention in Complex Percutaneous Coronary Intervention: Overview of Angioplasty, Atherectomy, and Lithotripsy

    Get PDF
    Calcific coronary artery disease intervention is associated with uniformly worse short-term procedural and long-term clinical results compared with treatment of non-calcified lesions. Multiple intravascular imaging tools currently exist to aid the identification and detailed characterization of intracoronary calcium, and guide appropriate follow-on management strategies. Several unique device therapies, to include angioplasty, atherectomy, and lithotripsy may be employed to enhance lesion preparation, stent implantation and optimization, and improve patient outcomes. Current low use of both imaging and ablative technologies in the US offers significant future opportunities for improving the comprehensive evaluation and management of these complex lesion subsets and patients

    Role of Intracoronary Imaging in Acute Coronary Syndromes

    Get PDF
    Intravascular imaging with optical coherence tomography (OCT) and intravascular ultrasound provides superior visualization of the culprit plaques for acute coronary syndromes (ACS) compared with coronary angiography. Combined with angiography, intravascular imaging can be used to instigate ‘precision therapy’ for ACS. Post-mortem histopathology identified atherothrombosis at the exposed surface of a ruptured fibrous cap as the main cause of ACS. Further histopathological studies identified intact fibrous caps and calcified nodules as other culprit lesions for ACS. These plaque types were subsequently also identified on intravascular imaging, particularly with the high-resolution OCT. The less-common non-atherothrombotic causes of ACS are coronary artery spasm, coronary artery dissection, and coronary embolism. In this review, the authors provide an overview of clinical studies using intravascular imaging with OCT in the diagnosis and management of ACS

    Lesion preparation: an essential component of percutaneous coronary intervention in calcified lesions

    Get PDF

    State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses - from debulking to plaque modification, a 40-year-long journey

    No full text
    Since the first balloon angioplasty by Andreas Grüntzig 40 years ago, interventional cardiology has witnessed the introduction of countless tools and techniques that have significantly contributed to broadening the application of percutaneous coronary interventions (PCI) in unprecedented anatomic settings. Heavily calcified, fibrotic coronary stenosis has traditionally represented a very challenging scenario for PCI, and a very common indication for surgical revascularisation. This was mostly due to the difficulty in adequately dilating these lesions and/or to the inability to deliver and implant stents appropriately, which is often associated with high rates of procedural complications and suboptimal long-term clinical outcomes. Thanks to dedicated cutting and scoring balloons and to atherectomy devices, the treatment of most fibrotic and heavily calcified stenoses has become feasible and safe. Interventional cardiologists have learned how best to apply these tools through better patient and lesion selection, and also as a result of improved technology and techniques. In this review, we describe a 40-year-long journey that has evolved from the initial stand-alone debulking strategy to the currently applied coronary plaque modification, with the main objective of optimising drug-eluting stent delivery and implantation, translating into significantly improved patient outcomes
    corecore