2,736 research outputs found
Chemical mechanical polishing of thin film diamond
The demonstration that Nanocrystalline Diamond (NCD) can retain the superior
Young's modulus (1,100 GPa) of single crystal diamond twinned with its ability
to be grown at low temperatures (<450 {\deg}C) has driven a revival into the
growth and applications of NCD thin films. However, owing to the competitive
growth of crystals the resulting film has a roughness that evolves with film
thickness, preventing NCD films from reaching their full potential in devices
where a smooth film is required. To reduce this roughness, films have been
polished using Chemical Mechanical Polishing (CMP). A Logitech Tribo CMP tool
equipped with a polyurethane/polyester polishing cloth and an alkaline
colloidal silica polishing fluid has been used to polish NCD films. The
resulting films have been characterised with Atomic Force Microscopy, Scanning
Electron Microscopy and X-ray Photoelectron Spectroscopy. Root mean square
roughness values have been reduced from 18.3 nm to 1.7 nm over 25 {\mu}m,
with roughness values as low as 0.42 nm over ~ 0.25 {\mu}m. A polishing
mechanism of wet oxidation of the surface, attachment of silica particles and
subsequent shearing away of carbon has also been proposed.Comment: 6 pages, 6 figure
Chemical nucleation of diamond films
With the large differences in surface energy between film and substrate in combination with the low sticking coefficient of hydrocarbon radicals, nanocrystalline diamond growth on foreign substrates typically results in poor nucleation densities. A seeding technique is therefore required to realize pinhole-free and thin coalesced films. In this work, a chemical nucleation method for growth of diamond on nondiamond substrates based on 2,2-divinyladamantane is shown. After treating with the carbon-containing DVA, the chemically treated wafers were exposed to low-power-density plasma, known as the incubation phase, to facilitate the formation of diamond nucleation sites followed by a high-power-density growth regime to produce coalesced films. The resulting films demonstrate high crystallinity, whereas the Raman spectra suggest high-quality diamond with low sp² content
Superconducting Diamond on Silicon Nitride for Device Applications
Chemical vapour deposition (CVD) grown nanocrystalline diamond is an
attractive material for the fabrication of devices. For some device
architectures, optimisation of its growth on silicon nitride is essential.
Here, the effects of three pre-growth surface treatments, often employed as
cleaning methods of silicon nitride, were investigated. Such treatments provide
control over the surface charge of the substrate through modification of the
surface functionality, allowing for the optimisation of electrostatic diamond
seeding densities. Zeta potential measurements and X-ray photoelectron
spectroscopy (XPS) were used to analyse the silicon nitride surface following
each treatment. Exposing silicon nitride to an oxygen plasma offered optimal
surface conditions for the electrostatic self-assembly of a hydrogen-terminated
diamond nanoparticle monolayer. The subsequent growth of boron-doped
nanocrystalline diamond thin films on modified silicon nitride substrates under
CVD conditions produced coalesced films for oxygen plasma and solvent
treatments, whilst pin-holing of the diamond film was observed following RCA-1
treatment. The sharpest superconducting transition was observed for diamond
grown on oxygen plasma treated silicon nitride, demonstrating it to be of the
least structural disorder. Modifications to the substrate surface optimise the
seeding and growth processes for the fabrication of diamond on silicon nitride
devices
Mechanisms of human kidney stone formation
The precise mechanisms of kidney stone formation and growth are not completely known, even though human stone disease appears to be one of the oldest diseases known to medicine. With the advent of the new digital endoscope and detailed renal physiological studies performed on well phenotyped stone formers, substantial advances have been made in our knowledge of the pathogenesis of the most common type of stone former, the idiopathic calcium oxalate stone former as well as nine other stone forming groups. The observations from our group on human stone formers and those of others on model systems have suggested four entirely different pathways for kidney stone formation. Calcium oxalate stone growth over sites of Randall's plaque appear to be the primary mode of stone formation for those patients with hypercalciuria. Overgrowths off the ends of Bellini duct plugs have been noted in most stone phenotypes, do they result in a clinical stone? Micro-lith formation does occur within the lumens of dilated inner medullary collecting ducts of cystinuric stone formers and appear to be confined to this space. Lastly, cystinuric stone formers also have numerous small, oval, smooth yellow appearing calyceal stones suggestive of formation in free solution. The scientific basis for each of these four modes of stone formation are reviewed and used to explore novel research opportunities
Conducting Polymer and Hydrogenated Amorphous Silicon Hybrid Solar Cells
An organic-inorganic hybrid solar cell with a p-i-n stack structure has been investigated. The p-layer was a spin coated film of PEDOT:PSS poly 3,4-ethylenedioxythiophene polystyrenesulfonate. The i-layer was hydrogenated amorphous silicon a-Si:H, and the n-layer was microcrystalline silicon c-Si. The inorganic layers were deposited on top of the organic layer by the hot-wire chemical vapor deposition technique at 200 °C. These hybrid devices exhibited open circuit voltages VOC as large as 0.88 V and solar conversion efficiencies as large as 2.1%. Comparison of these devices with those incorporating a-SiC:H:B p-layers indicates that the organic layer is acting as an electrically ideal p-layer
Micro-CT imaging of Randall's plaques
Micro-computed tomographic imaging (micro-CT) provides unprecedented information on stone structure and mineral composition. High-resolution micro-CT even allows visualization of the lumens of tubule and/or vessels within Randall's plaque, on stones or in papillary biopsies, thus giving a non-destructive way to study these sites of stone adhesion. This paper also shows an example of a stone growing on a different anchoring mechanism: a mineral plug within the lumen of a Bellini duct (BD plug). Micro-CT shows striking structural differences between stones that have grown on Randall's plaque and those that have grown on BD plugs. Thus, Randall's plaque can be distinguished by micro-CT, and this non-destructive method shows great promise in helping to elucidate the different mechanisms by which small stones are retained in the kidney during the development of nephrolithiasis
Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones
Our previous work has shown that stone formers who form calcium phosphate (CaP) stones that contain any brushite (BRSF) have a distinctive renal histopathology and surgical anatomy when compared with idiopathic calcium oxalate stone formers (ICSF). Here we report on another group of idiopathic CaP stone formers, those forming stone containing primarily hydroxyapatite, in order to clarify in what ways their pathology differs from BRSF and ICSF. Eleven hydroxyapatite stone formers (HASF) (2 males, 9 females) were studied using intra-operative digital photography and biopsy of papillary and cortical regions to measure tissue changes associated with stone formation. Our main finding is that HASF and BRSF differ significantly from each other and that both differ greatly from ICSF. Both BRSF and ICSF patients have significant levels of Randall's plaque compared with HASF. Intra-tubular deposit number is greater in HASF than BRSF and nonexistent in ICSF while deposit size is smaller in HASF than BRSF. Cortical pathology is distinctly greater in BRSF than HASF. Four attached stones were observed in HASF, three in 25 BRSF and 5-10 per ICSF patient. HASF and BRSF differ clinically in that both have higher average urine pH, supersaturation of CaP, and calcium excretion than ICSF. Our work suggests that HASF and BRSF are two distinct and separate diseases and both differ greatly from ICSF
Measuring Galaxy Star Formation Rates From Integrated Photometry: Insights from Color-Magnitude Diagrams of Resolved Stars
We use empirical star formation histories (SFHs), measured from HST-based
resolved star color-magnitude diagrams, as input into population synthesis
codes to model the broadband spectral energy distributions (SEDs) of ~50 nearby
dwarf galaxies (6.5 < log M/M_* < 8.5, with metallicities ~10% solar). In the
presence of realistic SFHs, we compare the modeled and observed SEDs from the
ultraviolet (UV) through near-infrared (NIR) and assess the reliability of
widely used UV-based star formation rate (SFR) indicators. In the FUV through i
bands, we find that the observed and modeled SEDs are in excellent agreement.
In the Spitzer 3.6micron and 4.5micron bands, we find that modeled SEDs
systematically over-predict observed luminosities by up to ~0.2 dex, depending
on treatment of the TP-AGB stars in the synthesis models. We assess the
reliability of UV luminosity as a SFR indicator, in light of independently
constrained SFHs. We find that fluctuations in the SFHs alone can cause factor
of ~2 variations in the UV luminosities relative to the assumption of a
constant SFH over the past 100 Myr. These variations are not strongly
correlated with UV-optical colors, implying that correcting UV-based SFRs for
the effects of realistic SFHs is difficult using only the broadband SED.
Additionally, for this diverse sample of galaxies, we find that stars older
than 100 Myr can contribute from <5% to100% of the present day UV luminosity,
highlighting the challenges in defining a characteristic star formation
timescale associated with UV emission. We do find a relationship between UV
emission timescale and broadband UV-optical color, though it is different than
predictions based on exponentially declining SFH models. Our findings have
significant implications for the comparison of UV-based SFRs across
low-metallicity populations with diverse SFHs.Comment: 22 pages, 15 figures, ApJ accepte
Label-free proteomic methodology for the analysis of human kidney stone matrix composition.
Background: Kidney stone matrix protein composition is an important yet poorly understood aspect of nephrolithiasis. We hypothesized that this proteome is considerably more complex than previous reports have indicated and that comprehensive proteomic profiling of the kidney stone matrix may demonstrate relevant constitutive differences between stones. We have analyzed the matrices of two unique human calcium oxalate stones (CaOx-Ia and CaOx-Id) using a simple but effective chaotropic reducing solution for extraction/solubilization combined with label-free quantitative mass spectrometry to generate a comprehensive profile of their proteomes, including physicochemical and bioinformatic analysis.` Results: We identified and quantified 1,059 unique protein database entries in the two human kidney stone samples, revealing a more complex proteome than previously reported. Protein composition reflects a common range of proteins related to immune response, inflammation, injury, and tissue repair, along with a more diverse set of proteins unique to each stone. Conclusion: The use of a simple chaotropic reducing solution and moderate sonication for extraction and solubilization of kidney stone powders combined with label-free quantitative mass spectrometry has yielded the most comprehensive list to date of the proteins that constitute the human kidney stone proteome. Electronic supplementary material: The online version of this article (doi:10.1186/s12953-016-0093-x) contains supplementary material, which is available to authorized users
- …