53 research outputs found

    Endometrial Tumor Classification by Histomorphology and Biomarkers in the Nurses’ Health Study

    Get PDF
    Objective: Endometrial cancers have historically been classified by histomorphologic appearance, which is subject to interobserver disagreement. As molecular and biomarker testing has become increasingly available, the prognostic significance and accuracy of histomorphologic diagnoses have been questioned. To address these issues for a large, prospective cohort study, we provide the results of a centralized pathology review and biomarker analysis of all incidental endometrial carcinomas occurring between 1976 and 2012 in the Nurses' Health Study. Methods: Routine histology of all (n = 360) cases was reviewed for histomorphologic diagnosis. Cases were subsequently planted in a tissue microarray to explore expression of a variety of biomarkers (e.g., ER, PR, p53, PTEN, PAX2, AMACR, HNF1β, Napsin A, p16, PAX8, and GATA3). Results: Histologic subtypes included endometrioid (87.2%), serous (5.6%), carcinosarcoma (3.9%), clear cell (1.7%), and mixed type (1.7%). Biomarker results within histologic subtypes were consistent with existing literature: abnormal p53 was frequent in serous cases (74%), and HNF1β (67%), Napsin A (67%), and AMACR (83%) expression was frequent in clear cell carcinomas. Our dataset also allowed for examination of biomarker expression across non-preselected histologies. The results demonstrated that (1) HNF1β was not specific for clear cell carcinoma, (2) TP53 mutations occurred across many histologies, and (3) GATA3 was expressed across multiple histotypes, with 75% of positive cases demonstrating high-grade features. Conclusions: Our findings establish the subtypes of endometrial cancer occurring in the Nurses' Health Study, corroborate the sensitivity of certain well-established biomarkers, and call into question previously identified associations between certain biomarkers (e.g., HNF1B) and particular histotypes

    Evaluating markers of epithelial-mesenchymal transition to identify cancer patients at risk for metastatic disease

    Get PDF
    Most cancer deaths are due to metastases. Markers of epithelial-mesenchymal transition (EMT) measured in primary tumor cancer cells could be helpful to assess patient risk of metastatic disease, even among those otherwise diagnosed with local disease. Previous studies of EMT markers and patient outcomes used inconsistent methods and did not compare the clinical impact of different expression cut points for the same marker. Using digital image analysis, we measured the EMT markers Snail and E-cadherin in primary tumor specimens from 190 subjects in tissue microarrays from a population-based prospective cohort of colorectal cancer patients and estimated their associations with time-to-death. After measuring continuous marker expression data, we performed a systematic search for the cut point for each marker with the best model fit between dichotomous marker expression and time-to-death. We also assessed the potential clinical impact of different cut points for the same marker. After dichotomizing expression status at the statistically-optimal cut point, we found that Snail expression was not associated with time-to-death. When measured as a weighted average of tumor cores, low E-cadherin expression was associated with a greater risk of dying within 5 years of surgery than high expression (risk difference = 33 %, 95 % confidence interval 3–62 %). Identifying a clinically-optimal cut point for an EMT marker requires trade-offs between strength and precision of the association with patient outcomes, as well as consideration of the number of patients whose treatments might change based on using the marker at a given cut point

    Haploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development

    Get PDF
    SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, plays a vital role in the regulation of metabolism, stress responses, and genome stability. However, the role of SIRT1 in the multi-step process leading to transformation and/or tumorigenesis, as either a tumor suppressor or tumor promoter, is complex and maybe dependent upon the context in which SIRT1 activity is altered, and the role of SIRT1 in tumor metabolism is unknown. Here we demonstrate that SIRT1 dose-dependently regulates cellular glutamine metabolism and apoptosis, which in turn differentially impact cell proliferation and cancer development. Heterozygous deletion of Sirt1 induces c-Myc expression, enhancing glutamine metabolism and subsequent proliferation, autophagy, stress resistance and cancer formation. In contrast, homozygous deletion of Sirt1 triggers cellular apoptotic pathways, increases cell death, diminishes autophagy, and reduces cancer formation. Consistent with the observed dose-dependence in cells, intestine-specific Sirt1 heterozygous mice have enhanced intestinal tumor formation, whereas intestine-specific Sirt1 homozygous knockout mice have reduced development of colon cancer. Furthermore, SIRT1 reduction but not deletion is associated with human colorectal tumors, and colorectal cancer patients with low protein expression of SIRT1 have a poor prognosis. Taken together, our findings indicate that the dose-dependent regulation of tumor metabolism and possibly apoptosis by SIRT1 mechanistically contributes to the observed dual roles of SIRT1 in tumorigenesis. Our study highlights the importance of maintenance of a suitable SIRT1 dosage for metabolic and tissue homeostasis, which will have important implications in SIRT1 small molecule activators/inhibitors based therapeutic strategies for cancers

    Cancer Risk after Fat Transfer: A Multicenter Case-Cohort Study

    Get PDF
    Fat transfer is an increasingly popular method for refining post-mastectomy breast reconstructions. However, concern persists that fat transfer may promote disease recurrence. Adipocytes are derived from adipose-derived stem cells and express adipocytokines that can facilitate active breast cancer cells in laboratory models. We sough to evaluate the association between fat transfer to the reconstructed breast and cancer recurrence in patients diagnosed with local or regional invasive breast cancers

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

    Get PDF
    Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at √s = 13 TeV and with an integrated luminosity of 140 fb−1. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory

    Association of genomic domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness

    No full text
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3' region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual
    • …
    corecore