5 research outputs found

    Stakeholder perspectives on large-scale marine protected areas.

    No full text
    Large-scale marine protected areas (LSMPAs), MPAs greater than 100,000km2, have proliferated in the past decade. However, the value of LSMPAs as conservation tools is debated, in both global scientific and policy venues as well as in particular sites. To add nuance and more diverse voices to this debate, this research examines the perspectives of stakeholders directly engaged with LSMPAs. We conducted a Q Method study with forty LSMPA stakeholders at five sites, including three established LSMPAs (the Marianas Trench Marine National Monument, United States; the Phoenix Islands Protected Area, Kiribati; the National Marine Sanctuary, Palau) and two sites where LSMPAs had been proposed at the time of research (Bermuda and Rapa Nui (Easter Island), Chile). The analysis reveals five distinct viewpoints of LSMPAs. These include three more optimistic views of LSMPAs we have named Enthusiast, Purist, and Relativist. It also depicts two more cautious views of LSMPAs, which we have named Critic and Skeptic. The findings demonstrate the multi-dimensionality of stakeholder viewpoints on LSMPAs. These shared viewpoints have implications for the global LSMPA debate and LSMPA decision-makers, including highlighting the need to focus on LSMPA consultation processes. Better understanding of these viewpoints, including stakeholder beliefs, perspectives, values and concerns, may help to facilitate more nuanced dialogue amongst LSMPA stakeholders and, in turn, promote better governance of LSMPAs

    Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice

    No full text
    Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite.Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite specific T regulatory response in these mice, the increase in the number of tumoursfollowing infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant
    corecore