3 research outputs found

    Effects of Cinacalcet on Fracture Events in Patients Receiving Hemodialysis The EVOLVE Trial

    No full text
    Fractures are frequent in patients receiving hemodialysis. We tested the hypothesis that cinacalcet would reduce the rate of clinical fractures in patients receiving hemodialysis using data from the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events trial, a placebo-controlled trial that randomized 3883 hemodialysis patients with secondary hyperparathyroidism to receive cinacalcet or placebo for ≤64 months. This study was a prespecified secondary analysis of the trial whose primary end point was all-cause mortality and non-fatal cardiovascular events, and one of the secondary end points was first clinical fracture event. Clinical fractures were observed in 255 of 1935 (13.2%) patients randomized to placebo and 238 of 1948 (12.2%) patients randomized to cinacalcet. In an unadjusted intention-to-treat analysis, the relative hazard for fracture (cinacalcet versus placebo) was 0.89 (95% confidence interval [95% CI], 0.75 to 1.07). After adjustment for baseline characteristics and multiple fractures, the relative hazard was 0.83 (95% CI, 0.72 to 0.98). Using a prespecified lag-censoring analysis (a measure of actual drug exposure), the relative hazard for fracture was 0.72 (95% CI, 0.58 to 0.90). When participants were censored at the time of cointerventions (parathyroidectomy, transplant, or provision of commercial cinacalcet), the relative hazard was 0.71 (95% CI, 0.58 to 0.87). Fracture rates were higher in older compared with younger patients and the effect of cinacalcet appeared more pronounced in older patients. In conclusion, using an unadjusted intention-to-treat analysis, cinacalcet did not reduce the rate of clinical fracture. However, when accounting for differences in baseline characteristics, multiple fractures, and/or events prompting discontinuation of study drug, cinacalcet reduced the rate of clinical fracture by 16%-29%

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Effects of Cinacalcet on Atherosclerotic and Nonatherosclerotic Cardiovascular Events in Patients Receiving Hemodialysis: The EValuation Of Cinacalcet HCl Therapy to Lower CardioVascular Events (EVOLVE) Trial

    Get PDF
    BACKGROUND: Premature cardiovascular disease limits the duration and quality of life on long-term hemodialysis. The objective of this study was to define the frequency of fatal and nonfatal cardiovascular events attributable to atherosclerotic and nonatherosclerotic mechanisms, risk factors for these events, and the effects of cinacalcet, using adjudicated data collected during the EValuation of Cinacalcet HCl Therapy to Lower CardioVascular Events (EVOLVE) Trial. METHODS AND RESULTS: EVOLVE was a randomized, double-blind, placebo-controlled clinical trial that randomized 3883 hemodialysis patients with moderate to severe secondary hyperparathyroidism to cinacalcet or matched placebo for up to 64 months. For this post hoc analysis, the outcome measure was fatal and nonfatal cardiovascular events reflecting atherosclerotic and nonatherosclerotic cardiovascular diseases. During the trial, 1518 patients experienced an adjudicated cardiovascular event, including 958 attributable to nonatherosclerotic disease. Of 1421 deaths during the trial, 768 (54%) were due to cardiovascular disease. Sudden death was the most frequent fatal cardiovascular event, accounting for 24.5% of overall mortality. Combining fatal and nonfatal cardiovascular events, randomization to cinacalcet reduced the rates of sudden death and heart failure. Patients randomized to cinacalcet experienced fewer nonatherosclerotic cardiovascular events (adjusted relative hazard 0.84, 95% CI 0.74 to 0.96), while the effect of cinacalcet on atherosclerotic events did not reach statistical significance. CONCLUSIONS: Accepting the limitations of post hoc analysis, any benefits of cinacalcet on cardiovascular disease in the context of hemodialysis may result from attenuation of nonatherosclerotic processes. CLINICAL TRIALS REGISTRATION: Unique identifier: NCT00345839. URL: ClinicalTrials.gov
    corecore