22 research outputs found

    PH-dependent bioavailability, speciation, and phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans

    Get PDF
    Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its "twin element", Mo; however, our knowledge of the behavior of W in the plant-soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean (Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5-5) or limed (pH of ≄7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg-1). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg-1), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg-1), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant-soil environment, something that has been completely neglected in the past.Fil: Oburger, Eva. Universidad de Viena; AustriaFil: Vergara Cid, Carolina. Universitat Fur Bodenkultur Wien; Austria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Preiner, Julian. Universidad de Viena; Austria. Universitat Fur Bodenkultur Wien; AustriaFil: Hu, Junjian. Universitat Fur Bodenkultur Wien; AustriaFil: Hann, Stephan. Universitat Fur Bodenkultur Wien; AustriaFil: Wanek, Wolfgang. Universidad de Viena; AustriaFil: Richter, Andreas. Universidad de Viena; Austri

    Application of planar optodes to measure CO2 gradients in the rhizosphere of unsaturated soils

    No full text
    International audienceSoil respiration is tightly linked to rhizosphere processes, which are characterized by high spatial variability. We tested whether planar optodes can be applied to capture this spatial variability of CO2 in the rhizosphere. Maize (Zea mays) was grown in rhizoboxes and CO2 concentration around roots was measured at three volumetric soil water contents (VWC) using planar optodes. Gradients of CO2 were clearly visible around root tips but less pronounced around mature root parts probably due to high root respiration and microbial activity around tips. Saturating the soil from 21% VWC increased the measured CO2 concentration from 0.23 to 1.47 ÎŒmol CO2 L−1. Statistical comparisons between VWC levels indicated that small changes in soil WC might strongly affect CO2 measurements. However, provided that the soil moisture is kept constant, optode measurements of CO2 can be used in moist soil samples to quantify relative differences in CO2 concentration between treatments or soil region

    Total synthesis of [13C2]-labelled phytosiderophores of the mugineic and avenic acid families

    No full text
    We herein report the synthesis of 13C2-labelled natural products from the mugineic acid and avenic acid family. These phytosiderophores (“plant iron carriers”) are built up from non-proteinogenic amino acids and play a key role in micronutrient uptake in gramineous plants. In this work two central building blocks are prepared from labelled starting materials (13C2-bromoacetic acid, 13C2-glycine) and further employed in our recently reported divergent, branched synthetic strategy delivering eight isotopically labelled phytosiderophores. The required labelled building blocks (13C2-L-allylglycine and a related hydroxylated derivative), were prepared via enantioselective phase-transfer catalysis and enantio- and diastereoselective aldol condensation with a chiral auxiliary respectively, both potentially valuable themselves for other synthetic routes towards labelled (natural) products

    Chemical imaging reveals environmental risk of minor tungsten and lead shotgun pellet constituents during weathering in soil

    No full text
    International audienceTungsten (W)-based shots are considered more environmentally safe than lead (Pb)-based shots, but knowledge about the W-shot fate in the soil environment is still limited, especially in terms of minor constituents such as iron, copper, and nickel (Ni). Contaminant behaviour in soil strongly depends on pH; in turn, the corrosion of metal composites may affect the pH locally. The aim of this study was to compare Pb- and W-shot weathering dynamics in soil (silt loam, pH 6.3) and reveal the interplay of shot weathering-induced pH-changes on the mobility of elements using in situ chemical imaging (Diffusive gradients in thin films for labile elements, planar optodes for soil pH) and batch incubation experiments over time (16 months). Despite our expectation to find acidification due to W oxidation, we observed a pH increase by 0.2 units in extracted soil solutions and by 0.6 units in the soil around W-shots as Ni dissolved from the binder phase of the shot. After 10 weeks, release of labile Ni was 3-times higher compared to W despite the low Ni content in the shot (7 %, m/m). Pb-shot oxidation increased soil solution pH by 0.5 units which likely supported mobility of Pb-shot-derived antimony (Sb). Steep gradients of labile W and Pb and soil solution concentrations <0.8 ÎŒmol L−1 indicated that transfer from shot to soil was low. Contrastingly, labile Ni and Sb were found up to ~4 mm from the shot surface and in higher soil solution concentrations as suggested by the shot constitution, indicating higher mobility of minor as compared to major shot constituents. After 16 months, 36 % of total Ni were dissolved in the soil solution highlighting the environmental relevance of minor shot constituents in Pb-shot alternatives after short term weathering in soil

    Metal solubility in the rhizosphere of a co-cropping system. The role of total carbon exudation, soluble proteins and plant interaction

    No full text
    In the present study we assessed how modified rhizosphere pH and root exudation (total carbon (C) and soluble proteins released) affected lead (Pb) solubility as well as plant growth and Pb accumulation. A pot experiment with Pb polluted agricultural soils was performed, which involved growing two species, Capsicum annum (pepper) and Tagetes minuta, with the latter being a native herb indicated as potential phytoextractor of Pb, in monocrop and co-cropping conditions. Changes in plant growth, metal uptake as well as rhizosphere soil parameters (pH, EC) and total C and protein exudation were determined. In addition, the metal extraction efficiency of exudates released under mono- and co-cropped conditions were investigated. Results showed that in contrast to the control soil (with low Pb concentration), total C exudation was higher in co-cropping systems in Pb contaminated soils which lead to increases in Pb uptake in both species. Exudates originating from T. minuta were more efficient in solubilizing Pb than exudates from pepper when grown under mono-cropping conditions. Exudates derived from co-cropping both species were either equally or less efficient in mobilizing Pb than exudates from T. minuta. The capacity of exudates to mobilize metals was dependent not only on the species specific quality of root exudates released, but also on its quantity, with the metal extraction efficiency increasing with C concentration in exudates. However, the role of exuded proteins in Pb solubilization was found to be negligible. Biochemical interactions in the rhizosphere under co-cropping conditions favored metal solubilization, and consequently Pb accumulation. The co-cropping conditions could allow accumulation of Pb to levels in pepper that pose risks when the plants are used as a food source.Fil: Vergara Cid, Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Oburger, Eva. Universitat Fur Bodenkultur Wien; AustriaFil: Preiner, Julian. Universidad de Viena; AustriaFil: Pignataro, MarĂ­a Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Rodriguez, Judith Hebelen. Universidad Nacional de CĂłrdoba; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; Argentin

    Experimental platforms for the investigation of spatiotemporal patterns in the rhizosphere-laboratory and field scale

    No full text
    The numerous feedback loops between roots, microorganisms, soil chemical and physical properties, and environmental variables result in spatial parameter patterns which are highly dynamic in time. In order to improve our understanding of the related rhizosphere processes and their relevance at the soil–plant system scale, experimental platforms are required. Those platforms should enable (1) to relate small scale observations (nm to dm) to system behaviour, (2) the integration of physical, chemical and biological sampling approaches within the same experiment, and (3) sampling at different time points during the life cycle of the system in question. Here we describe what requirements have to be met and to what extent this has been achieved in practice by the experimental platforms which were set up within the framework of DFG priority programme 2089 ‘‘Rhizosphere Spatiotemporal Organisation—a key to rhizosphere functions’’. It is discussed to what extent theoretical considerations could be accommodated, in particular for the comparison across scales, i.e., from laboratory to field scale. The latter scale is of utmost importance to overcome the trade-off between fraction of life cycle covered and the avoidance of unrealistic root length densities

    Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita

    No full text
    Pteris vittata (PV) and Pteris quadriaurita (PQ) are reported to hyperaccumulate arsenic (As) when grown in As-rich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (AsIII), arsenate (AsV), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O2), we found localized patterns of AsIII/AsV redox transformations in the PV rhizosphere (AsIII/AsV ratio of 0.57) compared to bulk soil (AsIII/AsV ratio of ≀0.04). Our data indicate that the high As root uptake, translocation and accumulation from the As-rich experimental soil (2080 mg kg−1) to PV fronds (6986 mg kg−1) induced As detoxification via AsV reduction and AsIII root efflux, leading to AsIII accumulation and re-oxidation to AsV in the rhizosphere porewater. This As cycling mechanism is linked to the reduction of O2 and MnIII/IV (oxyhydr)oxides resulting in decreased O2 levels and increased Mn solubilization along roots. Compared to PV, we found 4-fold lower As translocation to PQ fronds (1611 mg kg−1), 2-fold lower AsV depletion in the PQ rhizosphere, and no AsIII efflux from PQ roots, suggesting that PQ efficiently controls As uptake to avoid toxic As levels in roots. Analysis of root exudates obtained from soil-grown PV showed that As acquisition by PV roots was not associated with phytic acid release. Our study demonstrates that two closely-related As-accumulating ferns have distinct mechanisms for As uptake modulating As cycling in As-rich environments.ISSN:0098-8472ISSN:1873-730
    corecore